

# **Consistency and Trends of Technological Innovations**

A Network Approach to the International Patent Classification Data

Yuan Gao, Zhen Zhu, Massimo Riccaboni

6th Annual CIRANO-Sam M. Walton College Workshop on Networks in Trade and Finance

9/29/2017



Just another study on technological evolution using patent data,

Except that...

- Using a network approach
- Based on an international patent family database
- Established a systematic method, more generic and less dependent



- Patent Classification and Search
  - International Patent Classification system (IPC)
    - 8 sections
    - 639 subclasses
  - Current classification search platform
    - By IPC scheme: requires considerable familiarity of the IPC documentation
    - By catchwords: arbitrary choices of words might lead to mis-classification





Data

- OECD International Patent Dataset
  - Harmonized patent data from EPO, USPTO, JPO, etc.
  - OECD Triadic Patent Family
    - Eliminating home bias and geographical location influences
    - Evaluate patent values



Country shares of patents applied for at the EPO, patent grants by the USPTO and Triadic Patent Families, priority year 1999 (OECD, Patent Database, Oct., 2003)



## Network: Construction

## • Family-Cohort Network

- Based on unique IPC subclasses of patents belonging to the same family
- Aggregated numbers of families in cohort

| Family_ID | Patent number | IPC subclass     | First Priority Year |
|-----------|---------------|------------------|---------------------|
| 1         | EP0000001     | A01B, A01C       | 1980                |
| 1         | EP0000002     | A01B, A01C, A01D | 1980                |
| 2         | EP0000003     | A01E             | 1980                |
| 2         | EP0000004     | A01F             | 1980                |





- Citations Network
- Based on all IPC subclasses of patents in citing/cited families
- Aggregated numbers of citations

| D | Citing Patent number | Citing IPC subclass | Citing First Priority Year | Cited Family_ID | Cited Patent number | Cited IPC subclass | Cited First Priority Year |
|---|----------------------|---------------------|----------------------------|-----------------|---------------------|--------------------|---------------------------|
| 1 | EP0000001            | A01B, A01C          | 1980                       | 2               | EP0000003           | A01B, A01E         | 1981                      |
| 1 | EP0000002            | A01B, A01C, A01D    | 1980                       | 2               | EP0000004           | A01E, A01F         | 1981                      |



|      | A01B | A01C | A01D | A01E | A01F |
|------|------|------|------|------|------|
| A01B | 2    | 0    | 0    | 4    | 2    |
| A01C | 2    | 0    | 0    | 4    | 2    |
| A01D | 1    | 0    | 0    | 2    | 1    |
| A01E | 0    | 0    | 0    | 0    | 0    |
| A01F | 0    | 0    | 0    | 0    | 0    |

Split by earliest application (citing) year from 1978 to 2013



- Clustering identification based on Piccardi's method to find network communities by Lumped Markov Chains (Piccardi, 2011)
  - The *Persistence Probability*  $U_{CC}$  associated to a cluster *C* is not smaller than a (0< a<1)

$$U_{CC} = \frac{\sum_{i,j \in C} \pi_i p_{ij}}{\sum_{i \in C} \pi_i},$$

 $\pi_i$  is the probability of being in node *i* (at time *t*)  $p_{ij}$  is the probability of random walking from node *i* to *j* 

– A sudden drop of  $U_{CC}$  indicates the breaking of a significant "natural" community – threshold setting





- Coreness
  - The *Closeness* of a node to other nodes in the same community, weighted by the community *Persistence Probability*

$$C_{ic} = \frac{1}{\frac{\bar{d_{ij}n}}{n-1}} U_{cc} = \frac{n-1}{\bar{d_{ij}n}} U_{cc}, \quad n \text{ is the number of nodes in community } c$$

- Community Tracking
  - Identify the *key* IPC subclasses with highest closeness ranking over time
  - Find the stable endogenous communities by looking for the most persistent subclasses in the same community with the *keys*.



- Consistency
  - − Occurrence  $\ge$  80%

i.e. a subclass needs to be found in the endogenous community with the key in at least 29 years out of the total span of 36 years

- Changing Trends
  - Occurrence  $\leq$  60%, among which at least 3 years are consecutive





A61K: PREPARATIONS FOR MEDICAL, DENTAL, OR TOILET PURPOSES A01N: PRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS; BIOCIDES A23: FOODS OR FOODSTUFFS; THEIR TREATMENT, NOT COVERED BY OTHER CLASSES C08 – C13: ORGANIC MACROMOLECULAR COMPOUNDS; ANIMAL OR VEGETABLE OILS, FATS; BIOCHEMISTRY, ETC



## Results: A61K\_Trends\_Family-cohort



A61K: PREPARATIONS FOR MEDICAL, DENTAL, OR TOILET PURPOSES A47J: KITCHEN EQUIPMENT; COFFEE MILLS; SPICE MILLS; APPARATUS FOR MAKING BEVERAGES C12J: VINEGAR; ITS PREPARATION

C12J:Vinegar; Its Prepa g Radioactively Contaminated M emical Elements; Radioactive So

### SCHOOL FOR ADVANCED Results: A61K\_Consistency\_Family-cohort vs Citation

### Family-cohort

LUCCA





A61K: PREPARATIONS FOR MEDICAL, DENTAL, OR TOILET PURPOSES

#### FOR ADVANCED Verification: Network Consistency vs Naïve Counting

### Family-cohort

SCHOOL

**STUDIES** LUCCA





A61K: PREPARATIONS FOR MEDICAL, DENTAL, OR TOILET PURPOSES





A61K: PREPARATIONS FOR MEDICAL, DENTAL, OR TOILET PURPOSES

SCHOOL FOR ADVANCED

STUDIES LUCCA

 $\mathsf{IM}$ 



Contributions

- More accurate and thorough coverage than the authority assigned classifications
- A global network perspective adds information to the conventional indexes
- Enhanced classification search platform

Future Work

- Addition of the regional dimension
- Refinement of the changes over time