Cascades and Fluctuations in an Economy with an Endogenous Production Network

Mathieu Taschereau-Dumouchel

Cornell University

September 2017

Introduction

• Production in modern economies involves a complex network of producers supplying and demanding goods from each other

- The shape of this network
 - is an important determinant of how micro shocks aggregate into macro fluctuations
 - is also constantly changing in response to micro shocks
 - For instance, after a severe shock a producer might shut down which might lead its neighbors to shut down as well, etc...
 - Cascade of shutdowns that spreads through the network

This paper proposes a

- Production in modern economies involves a complex network of producers supplying and demanding goods from each other
- The shape of this network
 - is an important determinant of how micro shocks aggregate into macro fluctuations
 - is also constantly changing in response to micro shocks
 - For instance, after a severe shock a producer might shut down which might lead its neighbors to shut down as well, etc...
 - Cascade of shutdowns that spreads through the network

- Production in modern economies involves a complex network of producers supplying and demanding goods from each other
- The shape of this network
 - is an important determinant of how micro shocks aggregate into macro fluctuations
 - is also constantly changing in response to micro shocks
 - For instance, after a severe shock a producer might shut down which might lead its neighbors to shut down as well, etc...
 - Cascade of shutdowns that spreads through the network

- Production in modern economies involves a complex network of producers supplying and demanding goods from each other
- The shape of this network
 - is an important determinant of how micro shocks aggregate into macro fluctuations
 - is also constantly changing in response to micro shocks
 - For instance, after a severe shock a producer might shut down which might lead its neighbors to shut down as well, etc...
 - Cascade of shutdowns that spreads through the network

- Production in modern economies involves a complex network of producers supplying and demanding goods from each other
- The shape of this network
 - is an important determinant of how micro shocks aggregate into macro fluctuations
 - is also constantly changing in response to micro shocks
 - For instance, after a severe shock a producer might shut down which might lead its neighbors to shut down as well, etc...
 - Cascade of shutdowns that spreads through the network

- Endogenous network formation
 - Atalay et al (2011), Oberfield (2013), Carvalho and Voigtländer (2014)
- Network of sectors and fluctuations
 - Horvath (1998), Dupor (1999), Acemoglu et al (2012), Baqaee (2016), Acemoglu et al (2016), Lim (2017)
- Non-convex adjustments in networks
 - Bak, Chen, Woodford and Scheinkman (1993), Elliott, Golub and Jackson (2014)

I. Model

- There are *n* units of production (firm) indexed by $j \in \{1, \ldots, n\}$
 - Each unit produces a differentiated good
 - Differentiated goods can be used to
 - produce a final good

$$Y \equiv \left(\sum_{j=1}^{n} \left(y_{j}^{0}\right)^{\frac{\sigma-1}{\sigma}}\right)^{\frac{\sigma}{\sigma-1}}$$

- produce other differentiated goods
- Representative household
 - Consumes the final good
 - Supplies L units of labor inelastically

• Firm *j* produces good *j*

$$y_j = \frac{A}{\alpha^{\alpha} (1-\alpha)^{1-\alpha}} z_j \left(\sum_{i=1}^n x_{ij}^{\frac{e-1}{e}}\right)^{\alpha \frac{e}{e-1}} l_j^{1-\alpha}$$

- $\Omega_{ij} = 1$ if connection and $\Omega_{ij} = 0$ otherwise
- A connection can be active or inactive
- Matrix Ω is exogenous
- A firm can only produce if it pays a fixed cost f in units of labor
 - $\theta_j = 1$ if j is operating and $\theta_j = 0$ otherwise
 - Vector θ is endogenous

• Firm *j* produces good *j*

$$y_j = \frac{A}{\alpha^{\alpha} (1-\alpha)^{1-\alpha}} z_j \left(\sum_{i=1}^n x_{ij}^{\frac{\epsilon-1}{\epsilon}} \right)^{\alpha \frac{\epsilon}{\epsilon-1}} l_j^{1-\alpha}$$

- $\Omega_{ij} = 1$ if connection and $\Omega_{ij} = 0$ otherwise
- A connection can be active or inactive
- Matrix Ω is exogenous
- A firm can only produce if it pays a fixed cost f in units of labor
 - $\theta_j = 1$ if j is operating and $\theta_j = 0$ otherwise
 - Vector θ is endogenous

• Firm *j* produces good *j*

$$y_{j} = \frac{A}{\alpha^{\alpha} (1-\alpha)^{1-\alpha}} z_{j} \left(\sum_{i=1}^{n} \Omega_{ij} x_{ij}^{\frac{\epsilon-1}{\epsilon}} \right)^{\alpha \frac{\epsilon}{\epsilon-1}} I_{j}^{1-\alpha}$$

- $\Omega_{ij} = 1$ if connection and $\Omega_{ij} = 0$ otherwise
- A connection can be active or inactive
- Matrix Ω is exogenous
- A firm can only produce if it pays a fixed cost f in units of labor
 - $\theta_j = 1$ if j is operating and $\theta_j = 0$ otherwise
 - Vector θ is endogenous

• Firm *j* produces good *j*

$$y_{j} = \frac{A}{\alpha^{\alpha} (1-\alpha)^{1-\alpha}} z_{j} \left(\sum_{i=1}^{n} \Omega_{ij} x_{ij}^{\frac{\epsilon-1}{\epsilon}} \right)^{\alpha \frac{\epsilon}{\epsilon-1}} I_{j}^{1-\alpha}$$

- $\Omega_{ij} = 1$ if connection and $\Omega_{ij} = 0$ otherwise
- A connection can be active or inactive
- Matrix Ω is exogenous
- A firm can only produce if it pays a fixed cost f in units of labor
 - $\theta_j = 1$ if j is operating and $\theta_j = 0$ otherwise
 - Vector θ is endogenous

• Firm *j* produces good *j*

$$y_j = \frac{A}{\alpha^{\alpha} (1-\alpha)^{1-\alpha}} z_j \theta_j \left(\sum_{i=1}^n \Omega_{ij} x_{ij}^{\frac{\epsilon-1}{\epsilon}} \right)^{\alpha \frac{\epsilon}{\epsilon-1}} I_j^{1-\alpha}$$

- $\Omega_{ij} = 1$ if connection and $\Omega_{ij} = 0$ otherwise
- A connection can be active or inactive
- Matrix Ω is exogenous
- A firm can only produce if it pays a fixed cost f in units of labor
 - $\theta_j = 1$ if j is operating and $\theta_j = 0$ otherwise
 - Vector θ is *endogenous*

Problem \mathcal{P}_{SP} of a social planner

$$\max_{\substack{y^0, \mathbf{x}, l\\ \theta \in \{0,1\}^n}} \left(\sum_{j=1}^n \left(y^0_j\right)^{\frac{\sigma-1}{\sigma}}\right)^{\frac{\sigma}{\sigma-1}}$$

subject to

1. a resource constraint for each good j

$$y_j^0 + \sum_{k=1}^n x_{jk} \le \frac{A}{\alpha^{\alpha} (1-\alpha)^{1-\alpha}} z_j \theta_j \left(\sum_{i=1}^n \Omega_{ij} x_{ij}^{\frac{\epsilon-1}{\epsilon}} \right)^{\alpha \frac{\epsilon-1}{\epsilon}} l_j^{1-\alpha}$$

2. a resource constraint on labor

$$\sum_{j=1}^{n} l_j + f \sum_{j=1}^{n} \theta_j \le L$$

Problem \mathcal{P}_{SP} of a social planner

$$\max_{\substack{y^0, x, l\\ \theta \in \{0,1\}^n}} \left(\sum_{j=1}^n \left(y_j^0 \right)^{\frac{\sigma-1}{\sigma}} \right)^{\frac{\sigma}{\sigma-1}}$$

subject to

1. a resource constraint for each good j

$$y_j^0 + \sum_{k=1}^n x_{jk} \leq \frac{A}{\alpha^{\alpha} (1-\alpha)^{1-\alpha}} z_j \theta_j \left(\sum_{i=1}^n \Omega_{ij} x_{ij}^{\frac{\epsilon-1}{\epsilon}} \right)^{\alpha \frac{\epsilon}{\epsilon-1}} l_j^{1-\alpha}$$

2. a resource constraint on labor

$$\sum_{j=1}^{n} I_j + f \sum_{j=1}^{n} \theta_j \le L$$

Problem \mathcal{P}_{SP} of a social planner

$$\max_{\substack{y^0, \mathbf{x}, l\\ \theta \in \{0,1\}^n}} \left(\sum_{j=1}^n \left(y^0_j \right)^{\frac{\sigma-1}{\sigma}} \right)^{\frac{\sigma}{\sigma-1}}$$

subject to

1. a resource constraint for each good j (Lagrange multiplier: λ_j)

$$y_j^0 + \sum_{k=1}^n x_{jk} \leq \frac{A}{\alpha^{\alpha} (1-\alpha)^{1-\alpha}} z_j \theta_j \left(\sum_{i=1}^n \Omega_{ij} x_{ij}^{\frac{\epsilon-1}{\epsilon}} \right)^{\alpha \frac{\epsilon}{\epsilon-1}} l_j^{1-\alpha}$$

2. a resource constraint on labor (Lagrange multiplier: w)

$$\sum_{j=1}^{n} I_j + f \sum_{j=1}^{n} \theta_j \le L$$

Define $q_j = w/\lambda_j$

- From the FOCs, output is $(1 \alpha) y_j = q_j l_j$
- q_j is the labor productivity of firm j

Proposition 1

In the efficient allocation,

$$q_{j} = z_{j} \theta_{j} A \left(\sum_{i=1}^{n} \Omega_{ij} q_{i}^{\epsilon-1} \right)^{\frac{\alpha}{\epsilon-1}}$$
(1)

Furthermore, there is a unique vector q that satisfies (1).

Knowing q we can solve for all other quantities easily.

Lemma 1

Aggregate output is

$$Y = Q\left(L - f\sum_{j=1}^{n} heta_{j}
ight)$$

where $Q \equiv \left(\sum_{j=1}^n q_j^{\sigma-1}\right)^{rac{1}{\sigma-1}}$ is aggregate labor productivity.

Labor allocation

$$\max_{\theta \in \{0,1\}^n} Q\left(L - f \sum_{j=1}^n \theta_j\right)$$

with

$$q_j = z_j \theta_j A\left(\sum_{i=1}^n \Omega_{ij} q_i^{\epsilon-1}\right)^{rac{lpha}{\epsilon-1}}$$

"Very hard problem" (MINLP — NP Hard)

- The set $\theta \in \{0,1\}^n$ is not convex
- Objective function is not concave

$$\max_{\theta \in \{0,1\}^n} Q\left(L - f \sum_{j=1}^n \theta_j\right)$$

with

$$q_j = z_j \theta_j A\left(\sum_{i=1}^n \Omega_{ij} q_i^{\epsilon-1}\right)^{\frac{lpha}{\epsilon-1}}$$

"Very hard problem" (MINLP — NP Hard)

- The set $\theta \in \{0,1\}^n$ is not convex
- Objective function is not concave

Consider the relaxed and reshaped problem \mathcal{P}_{RR}

$$\max_{\theta \in \{0,1\}^n} Q\left(L - f \sum_{j=1}^n \theta_j\right)$$

with

$$q_j = z_j heta_j A\left(\sum_{i=1}^n \Omega_{ij} q_i^{\epsilon-1}\right)^{rac{lpha}{\epsilon-1}}$$

Parameters a > 0 and $b \ge 0$ are reshaping constants

- Reshape the objective function *away* from optimum (i.e. when $0 < \theta_j < 1$)
 - For *a*: if $\theta_j \in \{0, 1\}$ then $\theta_i^a = \theta_j$
 - For b: $\{\theta_i = 0\} \Rightarrow \{q_i = 0\}$ and $\{\theta_i = 1\} \Rightarrow \left\{\theta_i^b q_i^{\epsilon-1} = q_i^{\epsilon-1}\right\}$
- Parameters such that P1 and P2 are satisfied:

$$a = rac{1}{\sigma-1}$$
 and $b = 1 - rac{\epsilon-1}{\sigma-1}$ (*

Consider the <u>relaxed</u> and reshaped problem \mathcal{P}_{RR}

$$\max_{\theta \in [0,1]^n} Q\left(L - f \sum_{j=1}^n \theta_j\right)$$

with

$$q_j = z_j heta_j A\left(\sum_{i=1}^n \Omega_{ij} q_i^{\epsilon-1}\right)^{rac{lpha}{\epsilon-1}}$$

Parameters a > 0 and $b \ge 0$ are reshaping constants

- Reshape the objective function *away* from optimum (i.e. when $0 < \theta_j < 1$)
 - For a: if $heta_j \in \{0,1\}$ then $heta_i^a = heta_j$
 - For b: $\{\theta_i = 0\} \Rightarrow \{q_i = 0\}$ and $\{\theta_i = 1\} \Rightarrow \left\{\theta_i^b q_i^{\epsilon-1} = q_i^{\epsilon-1}\right\}$
- Parameters such that P1 and P2 are satisfied:

$$a = rac{1}{\sigma-1}$$
 and $b = 1 - rac{\epsilon-1}{\sigma-1}$

Consider the <u>relaxed</u> and reshaped problem \mathcal{P}_{RR}

$$\max_{\theta \in [0,1]^n} Q\left(L - f \sum_{j=1}^n \theta_j\right)$$

with

$$q_j = z_j \theta_j^a A \left(\sum_{i=1}^n \Omega_{ij} \theta_i^b q_i^{\epsilon-1} \right)^{\frac{\alpha}{\epsilon-1}}$$

Parameters a > 0 and $b \ge 0$ are reshaping constants

- Reshape the objective function *away* from optimum (i.e. when $0 < \theta_j < 1$)
 - For a: if $heta_j \in \{0,1\}$ then $heta_i^a = heta_j$

For b:
$$\{\theta_i = 0\} \Rightarrow \{q_i = 0\}$$
 and $\{\theta_i = 1\} \Rightarrow \left\{\theta_i^b q_i^{\epsilon-1} = q_i^{\epsilon-1}\right\}$

• Parameters such that P1 and P2 are satisfied:

$$a = rac{1}{\sigma-1}$$
 and $b = 1 - rac{\epsilon-1}{\sigma-1}$ (

Consider the <u>relaxed</u> and reshaped problem \mathcal{P}_{RR}

$$\max_{\theta \in [0,1]^n} Q\left(L - f \sum_{j=1}^n \theta_j\right)$$

with

$$q_j = z_j \theta_j^{a} A \left(\sum_{i=1}^n \Omega_{ij} \theta_i^{b} q_i^{\epsilon-1} \right)^{\frac{\alpha}{\epsilon-1}}$$

Parameters a > 0 and $b \ge 0$ are reshaping constants

• Reshape the objective function *away* from optimum (i.e. when $0 < \theta_j < 1$)

▶ For *a*: if
$$\theta_j \in \{0, 1\}$$
 then $\theta_i^a = \theta_j$

For b:
$$\{\theta_i = 0\} \Rightarrow \{q_i = 0\}$$
 and $\{\theta_i = 1\} \Rightarrow \left\{\theta_i^b q_i^{\epsilon-1} = q_i^{\epsilon-1}\right\}$

• Parameters such that P1 and P2 are satisfied:

$$a = rac{1}{\sigma-1}$$
 and $b = 1 - rac{\epsilon-1}{\sigma-1}$

Consider the <u>relaxed</u> and reshaped problem \mathcal{P}_{RR}

$$\max_{\theta \in [0,1]^n} Q\left(L - f \sum_{j=1}^n \theta_j\right)$$

with

$$q_j = z_j \theta_j^{a} A \left(\sum_{i=1}^n \Omega_{ij} \theta_i^{b} q_i^{\epsilon-1} \right)^{\frac{\alpha}{\epsilon-1}}$$

Parameters a > 0 and $b \ge 0$ are reshaping constants

• Reshape the objective function *away* from optimum (i.e. when $0 < \theta_j < 1$)

For *a*: if
$$\theta_j \in \{0, 1\}$$
 then $\theta_i^a = \theta_j$

For b:
$$\{\theta_i = 0\} \Rightarrow \{q_i = 0\}$$
 and $\{\theta_i = 1\} \Rightarrow \left\{\theta_i^b q_i^{\epsilon-1} = q_i^{\epsilon-1}\right\}$

• Parameters such that P1 and P2 are satisfied:

$$a = rac{1}{\sigma-1}$$
 and $b = 1 - rac{\epsilon-1}{\sigma-1}$ (*)

Proposition 2

Under some parameter restrictions and if Ω is sufficiently connected then the Karush-Kuhn-Tucker conditions are necessary to characterize a solution to \mathcal{P}_{RR} . Furthermore, a solution to $\theta^* \in \{0,1\}^n$ to \mathcal{P}_{RR} also solves \mathcal{P}_{SP} .

Details

This proposition

- Only provides *sufficient* conditions
- In the paper: Test the approach on thousands of economies

Proposition 2

Under some parameter restrictions and if Ω is sufficiently connected then the Karush-Kuhn-Tucker conditions are necessary to characterize a solution to \mathcal{P}_{RR} . Furthermore, a solution to $\theta^* \in \{0,1\}^n$ to \mathcal{P}_{RR} also solves \mathcal{P}_{SP} .

Details

This proposition

- Only provides *sufficient* conditions
- In the paper: Test the approach on thousands of economies <a>Tests

Example with n = 2

Relaxed problem without reshaping

$$V(\theta) = Q(\theta) \left(L - f \sum_{j=1}^{n} \theta_{j} \right) \text{ with } q_{j} = z_{j} \theta_{j} A \left(\sum_{i=1}^{n} \Omega_{ij} q_{i}^{\epsilon-1} \right)^{\frac{\alpha}{\epsilon-1}}$$

Problem: V is not concave

- \Rightarrow First-order conditions are not sufficient
- \Rightarrow Numerical algorithm can get stuck in local maxima

Example with n = 2

Relaxed problem with reshaping

$$V(\theta) = Q(\theta) \left(L - f \sum_{j=1}^{n} \theta_{j} \right) \text{ with } q_{j} = z_{j} \theta_{j}^{\frac{1}{\sigma-1}} A \left(\sum_{i=1}^{n} \Omega_{ij} \theta_{i}^{1 - \frac{e-1}{\sigma-1}} q_{i}^{e-1} \right)^{\frac{\alpha}{e-1}}$$

Problem: *V* is now (quasi) concave

- $\Rightarrow\,$ First-order conditions are necessary and sufficient
- $\Rightarrow\,$ Numerical algorithm converges to global maximum

IV. Economic Forces at Work

- Operating 3 leads to a larger q₃ because 2 is operating
- Operating 1 increases q₂ because 2 is operating
- Complementarity between operating decisions of nearby firms

- Operating 3 leads to a larger q₃ because 2 is operating
- Operating 1 increases q₂ because 2 is operating
- Complementarity between operating decisions of nearby firms

- Operating 3 leads to a larger q_3 because 2 is operating
- Operating 1 increases q₂ because 2 is operating
- Complementarity between operating decisions of nearby firms

- Operating 3 leads to a larger q_3 because 2 is operating
- Operating 1 increases q₂ because 2 is operating
- Complementarity between operating decisions of nearby firms

- Operating 3 leads to a larger q_3 because 2 is operating
- Operating 1 increases q₂ because 2 is operating
- · Complementarity between operating decisions of nearby firms

Complementarities lead to clustering

V. Quantitative Exploration

- Two datasets that cover the U.S. economy
 - Cohen and Frazzini (2008) and Atalay et al (2011)
 - Both rely on Compustat data
 - Public firms must self-report customers that purchase more than 10% of sales
 - Use fuzzy-text matching algorithms and manual matching to build networks
 - Cover 1980 to 2004 and 1976 to 2009 respectively

Parameters from the literature

- $\alpha = 0.5$ to fit the share of intermediate (Jorgenson et al 1987, Jones 2011)
- $\sigma = \epsilon = 6$ average of estimates (Broda et al 2006)
 - Robustness with smaller ϵ in the paper
- $\log(z_{it}) \sim \mathcal{N}(0, 0.39^2)$ from Bartelsman et al (2013)
- $f \times n = 5\%$ to fit employment in management occupations
- Calibrate n = 3000 to match number of active firms in Atalay et al (2011)

Unobserved network Ω :

- Pick to match the *observed* in-degree distribution
- Generate thousands of such Ω 's and report averages

Parameters from the literature

- $\alpha = 0.5$ to fit the share of intermediate (Jorgenson et al 1987, Jones 2011)
- $\sigma = \epsilon = 6$ average of estimates (Broda et al 2006)
 - Robustness with smaller ϵ in the paper
- $\log(z_{it}) \sim \mathcal{N}(0, 0.39^2)$ from Bartelsman et al (2013)
- $f \times n = 5\%$ to fit employment in management occupations
- Calibrate n = 3000 to match number of active firms in Atalay et al (2011)

Unobserved network Ω :

- Pick to match the observed in-degree distribution
- Generate thousands of such $\Omega\sp{'s}$ and report averages

Shape of the network

What types of network does the planner choose?

- Compare optimal networks to completely random networks
- Differences highlights how efficient allocation shapes the network

	Optimal networks	Random networks
A. Power law shape parameters		
In-degree	1.43	1.48
Out-degree	1.37	1.48
B. Measures of proximity		
Clustering coefficient	0.027	0.018
Average distance between firms	2.26	2.64

Efficient allocation features

- More highly connected firms
- More clustering of firms

▶ Def. clust. coeff.

Cascades of shutdowns

Because of the complementarities between firms

- Exit of a firm makes it more likely that its neighbors exit as well ...
- ... which incentivizes the second neighbors to exit as well ...
- ...

Cascades of shutdowns

Because of the complementarities between firms

- Exit of a firm makes it more likely that its neighbors exit as well ...
- ... which incentivizes the second neighbors to exit as well ...
- ...

Robustness

Magnitude of shock necessary	v to make a firm exit varies
------------------------------	------------------------------

	Probability of firm shut down after 1 std shock
All firms	92%
High out-degree firms	20%
High in-degree firms	56%

Implications:

• Highly-connected firms are hard to topple but upon shutting down they create large cascades

▶ Robustness

	Probability of firm shut down after 1 std shock
All firms	92%
High out-degree firms	20%
High in-degree firms	56%

Magnitude of shock necessary to make a firm exit varies

Implications:

• Highly-connected firms are hard to topple but upon shutting down they create large cascades

	Correlation with output		
	Model	Data	
		CF (2008)	AHRS (2011)
A. Power law shape parameters			
In-degree	-0.10	-0.10	-0.21
Out-degree	-0.31	-0.24	-0.13
B. Clustering coefficient	0.47	0.70	0.15

The shape of the network changes with the business cycle

Implications:

• Recessions are periods with fewer highly-connected firms and in which clustering activity around most productive firms is costly

	Correlation with output		
	Model	Data	
		CF (2008)	AHRS (2011)
A. Power law shape parameters			
In-degree	-0.10	-0.10	-0.21
Out-degree	-0.31	-0.24	-0.13
B. Clustering coefficient	0.47	0.70	0.15

The shape of the network changes with the business cycle

Implications:

• Recessions are periods with fewer highly-connected firms and in which clustering activity around most productive firms is costly

Size of fluctuations

$$\mathbf{Y} = Q\left(L - f\sum_{j}\theta_{j}\right)$$

Table: Standard deviation of aggregates

	Output Y	Labor Prod. <i>Q</i>	Prod. labor $L - f \sum_{j} \theta_{j}$
Optimal network	0.039	0.039	0.0014
Fixed network	0.054	0.054	0

Implications:

 Substantially smaller fluctuations in optimal network economy comes from the reorganization of network after shocks

Intuition

Size of fluctuations

$$\mathbf{Y} = Q\left(L - f\sum_{j}\theta_{j}\right)$$

Table: Standard deviation of aggregates

	Output Y	Labor Prod. <i>Q</i>	Prod. labor $L - f \sum_{j} \theta_{j}$
Optimal network	0.039	0.039	0.0014
Fixed network	0.054	0.054	0

Implications:

 Substantially smaller fluctuations in optimal network economy comes from the reorganization of network after shocks

Intuition

A given network $heta^{k}$ is a function that maps $z
ightarrow Y_{k}\left(z
ight)$

A given network θ^{k} is a function that maps $z \rightarrow Y_{k}(z)$

A given network θ^{k} is a function that maps $z \rightarrow Y_{k}(z)$

From extreme value theory

$$\operatorname{Var}(Y) = \operatorname{Var}\left(\max_{k \in \{1, \dots, 2^n\}} Y_k\right)$$

declines rapidly with n

Additional results in the paper:

- Impact of position in the network on firm-level characteristics
- Endogenous skewness in distribution of employment, productivity, output

Summary

- Theory of network formation and aggregate fluctuations
- Propose an approach to solve these hard problems easily
- The optimal allocation features
 - Clustering of activity
 - Cascades of shutdowns/restarts
- Optimal network substantially limit the size of fluctuations

Additional results in the paper:

- Impact of position in the network on firm-level characteristics
- Endogenous skewness in distribution of employment, productivity, output

Summary

- Theory of network formation and aggregate fluctuations
- Propose an approach to solve these hard problems easily
- The optimal allocation features
 - Clustering of activity
 - Cascades of shutdowns/restarts
- Optimal network substantially limit the size of fluctuations

Labor allocation

Lemma 2

The optimal labor allocation satisfies

$$I = (1 - \alpha) \underbrace{[I_n - \alpha \Gamma]^{-1}}_{(1)} \underbrace{\left(\frac{q}{Q}\right)}_{(2)}^{\circ(\sigma-1)} \left(L - f \sum_{j=1}^n \theta_j\right)$$

where I_n is the identity matrix and where Γ is an $n \times n$ matrix where $\Gamma_{jk} = \frac{\Omega_{jk}q_j^{\epsilon-1}}{\sum_{i=1}^n \Omega_{ik}q_i^{\epsilon-1}}$ captures the importance of j as a supplier to k.

Determinants of I_j

(1) Importance of j as a supplier

• Leontief inverse
$$\left([I_n - \alpha \Gamma]^{-1} = I_n + \alpha \Gamma + (\alpha \Gamma)^2 + \dots \right)$$

(2) Relative efficiency

Return

Proposition 3

If $\Omega_{ij} = c_i d_j$ for some vectors c and d then the Karush-Kuhn-Tucker conditions are necessary and sufficient to characterize a solution to \mathcal{P}_{RR} .

Proposition 4

Proposition 3

If $\Omega_{ij} = c_i d_j$ for some vectors c and d then the Karush-Kuhn-Tucker conditions are necessary and sufficient to characterize a solution to \mathcal{P}_{RR} .

Proposition 4

Proposition 3

If $\Omega_{ij} = c_i d_j$ for some vectors c and d then the Karush-Kuhn-Tucker conditions are necessary and sufficient to characterize a solution to \mathcal{P}_{RR} .

Proposition 4

Proposition 3

If $\Omega_{ij} = c_i d_j$ for some vectors c and d then the Karush-Kuhn-Tucker conditions are necessary and sufficient to characterize a solution to \mathcal{P}_{RR} .

Proposition 4

Social Planner with Endogenous θ

P2 A solution to the alternative problem \mathcal{P}_{RR} also solves \mathcal{P}_{SP}

Proposition 5

If θ^* solves \mathcal{P}_{RR} and that $\theta_i^* \in \{0,1\}$ for all j, then θ^* also solves \mathcal{P}_{SP} .

Solution θ^* to \mathcal{P}_{RR} is such that $\theta_j^* \in \{0,1\}$ for all j (P2) if

- the (*) condition is satisfied
- there are many firms
- the network is sufficiently connected

Social Planner with Endogenous θ

P2 A solution to the alternative problem \mathcal{P}_{RR} also solves \mathcal{P}_{SP}

Proposition 5

If θ^* solves \mathcal{P}_{RR} and that $\theta_j^* \in \{0,1\}$ for all j, then θ^* also solves \mathcal{P}_{SP} .

Solution θ^* to \mathcal{P}_{RR} is such that $\theta^*_j \in \{0,1\}$ for all j (P2) if

- the (*) condition is satisfied
- there are many firms
- the network is sufficiently connected

Social Planner with Endogenous θ

P2 A solution to the alternative problem \mathcal{P}_{RR} also solves \mathcal{P}_{SP}

Proposition 5

If θ^* solves \mathcal{P}_{RR} and that $\theta_j^* \in \{0,1\}$ for all j, then θ^* also solves \mathcal{P}_{SP} .

Solution θ^* to \mathcal{P}_{RR} is such that $\theta_j^* \in \{0,1\}$ for all j (P2) if

- the (*) condition is satisfied
- there are many firms
- the network is sufficiently connected

Intuition:

• First-order condition on θ_j :

Marginal Benefit $(\theta_j, F(\theta)) - Marginal Cost (\theta_j, G(\theta)) = \overline{\mu}_j - \underline{\mu}_i$

- Under (*) the marginal benefit of $heta_j$ only depends on $heta_j$ through aggregates
- For large connected network F and G are independent of θ_j

▲ Return ↓ ▶ FOCs

Intuition:

• First-order condition on *θ_j*:

Marginal Benefit ($\bigotimes_{i}, F(\theta)$) – Marginal Cost ($\bigotimes_{i}, G(\theta)$) = $\overline{\mu}_{i} - \underline{\mu}_{i}$

- Under (*) the marginal benefit of θ_j only depends on θ_j through aggregates
- For large connected network F and G are independent of θ_j

▲ Return ↓ ► FOCs

Intuition:

• First-order condition on θ_j :

Marginal Benefit $(\mathcal{K}_{i}, \mathcal{F}(\mathcal{O})) - Marginal Cost (\mathcal{K}_{i}, \mathcal{F}(\mathcal{O})) = \bar{\mu}_{j} - \underline{\mu}_{i}$

- Under (*) the marginal benefit of θ_j only depends on θ_j through aggregates
- For large connected network F and G are independent of θ_j

Details of reshaping

Simpler to consider

$$\mathcal{P}'_{RD}: \max_{\theta \in [0,1]^n, q} \left(\sum_{j=1}^n q_j^{\sigma-1} \right)^{\frac{1}{\sigma-1}} \left(L - f \sum_{j=1}^n \theta_j \right)$$
$$q_j \le A z_j \theta_j^a A B_j^{\alpha} \qquad (LM: \beta_j)$$

where $B_j = \left(\sum_{i=1}^n \Omega_{ij} \theta_i^b q_i^{\epsilon-1}\right)^{\frac{1}{\epsilon-1}}$. First order condition with respect to θ_k :

$$\frac{\partial q_k}{\partial \theta_k} \frac{\partial Q}{\partial q_k} \left(L - f \sum_{j=1}^n \theta_j \right) - fQ + \sum_{j=1}^n \beta_j \left(\frac{\partial q_k}{\partial \theta_k} \frac{\partial B_j}{\partial q_k} + \frac{\partial B_j}{\partial \theta_k} \right) \frac{\partial q_j}{\partial B_j} = \overline{\mu}_k - \underline{\mu}_k$$

The terms are

$$\frac{\partial q_k}{\partial \theta_k} \frac{\partial Q}{\partial q_k} = z_k a \theta_k^{a-1} A B_k^{\alpha} \times (z_k \theta_k^a A B_k^{\alpha})^{\sigma-2} Q^{2-\sigma}$$
$$\frac{\partial q_k}{\partial \theta_k} \frac{\partial B_j}{\partial q_k} + \frac{\partial B_j}{\partial \theta_k} = B_j \theta_k^{b-1} \Omega_{kj} \left(\frac{z_k \theta_k^a A B_k^{\alpha}}{B_j}\right)^{\epsilon-1} \left(a + \frac{b}{\epsilon-1}\right)$$

◀ Return

Testing the approach on small networks

For small networks we can solve \mathcal{P}_{SP} directly by trying all possible vectors heta

• Comparing approaches for a million different economies:

	Number of firms <i>n</i>			
	8	10	12	14
A. With reshaping				
Firms with correct θ_i	99.9%	99.9%	99.9%	99.8%
Error in output Y	0.00039%	0.00081%	0.00174%	0.00171%
B. Without reshaping				
Firms with correct θ_j	84.3%	83.2%	82.3%	81.3%
Error in output Y	0.84%	0.89%	0.93%	0.98%

 $\sigma \in \{4, 6, 8\}$ and $\epsilon \in \{4, 6, 8\}$. For each combination of parameters 1000 different economies are created. For each economy, productivity is drawn from log $(z_k) \sim \text{iid } \mathcal{N}(0, \sigma_z)$ and Ω is drawn randomly such that each link Ω_{ij} exists with some probability such that a firm has on average five possible incoming connections. A network is kept in the sample only if the first-order conditions give a solution in which θ hits the bounds.

The errors come from

- firms that are particularly isolated
- two θ configurations with almost same output

For large networks we cannot solve \mathcal{P}_{SP} directly by trying all possible vectors heta

• After all the 1-deviations θ are exhausted:

	With reshaping	Without reshaping
Firms with correct θ_j	99.8%	72.1%
Error in output Y	0.00028%	0.69647%

Notes: Simulations of 200 different networks Ω and productivity vectors z that satisfy the properties of the calibrated economy.

• Very few "obvious errors" in the allocation found by the approach

◀ Return

Distribution of in-degree

Figure: Distribution of the number of suppliers and the number of customers

In-degree power law shape parameter

- Calibration: 1.43
- Data: 1.37 (Cohen and Frazzini, 2008) and 1.3 (Atalay et al, 2011)

Figure: Distribution of in-degree and out-degree in Bernard et al (2015)

Figure: Distribution of in-degree in Atalay et al (2011)

Return

- Triplet: three connected nodes (might be overlapping)
- Triangles: three fully connected nodes (3 triplets)

 $Clustering \ coefficient = \frac{3 \times number \ of \ triangles}{number \ of \ triplets}$

◀ Return

Figure: Distributions of log(q)

🔺 return

Cascades of shutdowns

Figure: $\alpha = 0.75$

Cascades of shutdowns

Figure: $\epsilon = 3$

	Probability of firm shutdown			
	Benchmark	lpha= 0.75	$\epsilon = 3$	
All firms	92%	82%	32%	
High out-degree firms	20%	8%	0%	
High in-degree firms	56%	19%	15%	

return