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Introduction

• Production in modern economies involves a complex network of producers
supplying and demanding goods from each other

• The shape of this network

◮ is an important determinant of how micro shocks aggregate into macro
fluctuations

◮ is also constantly changing in response to micro shocks

• For instance, after a severe shock a producer might shut down which might lead
its neighbors to shut down as well, etc...

• Cascade of shutdowns that spreads through the network

This paper proposes a

Theory of network formation and aggregate fluctuations
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Literature Review

• Endogenous network formation

◮ Atalay et al (2011), Oberfield (2013), Carvalho and Voigtländer (2014)

• Network of sectors and fluctuations

◮ Horvath (1998), Dupor (1999), Acemoglu et al (2012), Baqaee (2016),
Acemoglu et al (2016), Lim (2017)

• Non-convex adjustments in networks

◮ Bak, Chen, Woodford and Scheinkman (1993), Elliott, Golub and Jackson
(2014)
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Model

• There are n units of production (firm) indexed by j ∈ {1, . . . , n}

◮ Each unit produces a differentiated good

◮ Differentiated goods can be used to

• produce a final good

Y ≡





n
∑

j=1

(

y
0
j

)σ−1
σ





σ

σ−1

• produce other differentiated goods

• Representative household

◮ Consumes the final good

◮ Supplies L units of labor inelastically
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Model

• Firm j produces good j

yj =
A

αα (1− α) 1−α
zj

(
n∑

i=1

x
ǫ−1
ǫ

ij

)α ǫ

ǫ−1

l
1−α
j

• Firm j can only use good i as input if there is a connection from firm i to j

◮ Ωij = 1 if connection and Ωij = 0 otherwise

◮ A connection can be active or inactive

◮ Matrix Ω is exogenous

• A firm can only produce if it pays a fixed cost f in units of labor

◮ θj = 1 if j is operating and θj = 0 otherwise

◮ Vector θ is endogenous
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Social Planner

Problem PSP of a social planner

max
y0,x,l

θ∈{0,1}n

(
n∑

j=1

(

y
0
j

)σ−1
σ

) σ

σ−1

subject to

1. a resource constraint for each good j

y
0
j +

n∑

k=1

xjk ≤
A

αα (1− α) 1−α
zjθj

(
n∑

i=1

Ωijx
ǫ−1
ǫ

ij

)α ǫ

ǫ−1

l
1−α
j

2. a resource constraint on labor

n∑

j=1

lj + f

n∑

j=1

θj ≤ L
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θ∈{0,1}n

(
n∑

j=1

(

y
0
j

)σ−1
σ

) σ

σ−1

subject to

1. a resource constraint for each good j (Lagrange multiplier: λj)

y
0
j +

n∑

k=1

xjk ≤
A

αα (1− α) 1−α
zjθj

(
n∑

i=1

Ωijx
ǫ−1
ǫ

ij

)α ǫ

ǫ−1

l
1−α
j

2. a resource constraint on labor (Lagrange multiplier: w)

n∑

j=1

lj + f

n∑

j=1

θj ≤ L
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II. Social Planner with Exogenous θ
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Social Planner with Exogenous θ

Define qj = w/λj

• From the FOCs, output is (1− α) yj = qj lj

• qj is the labor productivity of firm j

Proposition 1

In the efficient allocation,

qj = zjθjA

(
n∑

i=1

Ωijq
ǫ−1
i

) α

ǫ−1

(1)

Furthermore, there is a unique vector q that satisfies (1).

8 / 25



Social Planner with Exogenous θ

Knowing q we can solve for all other quantities easily.

Lemma 1

Aggregate output is

Y = Q

(

L− f

n∑

j=1

θj

)

where Q ≡
(
∑n

j=1 q
σ−1
j

) 1
σ−1

is aggregate labor productivity.

Labor allocation
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III. Social Planner with Endogenous θ

9 / 25



Social Planner with Endogenous θ

max
θ∈{0,1}n

Q

(

L− f

n∑

j=1

θj

)

with

qj = zjθjA

(
n∑

i=1

Ωijq
ǫ−1
i

) α

ǫ−1

“Very hard problem” (MINLP — NP Hard)

• The set θ ∈ {0, 1}n is not convex

• Objective function is not concave
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Social Planner with Endogenous θ

Consider the relaxed and reshaped problem PRR

max
θ∈{0,1}n

Q

(

L− f

n∑

j=1

θj

)

with

qj = zjθjA

(
n∑

i=1

Ωijq
ǫ−1
i

) α

ǫ−1

Parameters a > 0 and b ≥ 0 are reshaping constants

• Reshape the objective function away from optimum (i.e. when 0 < θj < 1)

◮ For a: if θj ∈ {0, 1} then θa
j
= θj

◮ For b: {θi = 0} ⇒ {qi = 0} and {θi = 1} ⇒
{

θbi q
ǫ−1
i

= qǫ−1
i

}

• Parameters such that P1 and P2 are satisfied:

a =
1

σ − 1
and b = 1−

ǫ− 1

σ − 1
(⋆)
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Social Planner with Endogenous θ

Proposition 2

Under some parameter restrictions and if Ω is sufficiently connected then the

Karush-Kuhn-Tucker conditions are necessary to characterize a solution to PRR .

Furthermore, a solution to θ∗ ∈ {0, 1}n to PRR also solves PSP .

Details

This proposition

• Only provides sufficient conditions

• In the paper: Test the approach on thousands of economies Tests
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Example with n = 2

Relaxed problem without reshaping

V (θ) = Q (θ)

(

L− f

n∑

j=1

θj

)

with qj = zjθjA

(
n∑

i=1

Ωijq
ǫ−1
i

) α

ǫ−1

 0
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0
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0
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0
.1

Problem: V is not concave

⇒ First-order conditions are not sufficient

⇒ Numerical algorithm can get stuck in local maxima
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Example with n = 2

Relaxed problem with reshaping

V (θ) = Q (θ)

(

L− f

n∑

j=1

θj

)

with qj = zjθ
1

σ−1

j A

(
n∑

i=1

Ωijθ
1− ǫ−1

σ−1

i q
ǫ−1
i

) α

ǫ−1
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0
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Problem: V is now (quasi) concave

⇒ First-order conditions are necessary and sufficient

⇒ Numerical algorithm converges to global maximum
14 / 25



IV. Economic Forces at Work
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Complementarities

• Impact of operating 2 on the incentives to operate 1 and 3

◮ Operating 3 leads to a larger q3 because 2 is operating

◮ Operating 1 increases q2 because 2 is operating

• Complementarity between operating decisions of nearby firms
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Complementarities lead to clustering
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V. Quantitative Exploration
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Network data

• Two datasets that cover the U.S. economy

◮ Cohen and Frazzini (2008) and Atalay et al (2011)

◮ Both rely on Compustat data

• Public firms must self-report customers that purchase more than 10% of sales

• Use fuzzy-text matching algorithms and manual matching to build networks

◮ Cover 1980 to 2004 and 1976 to 2009 respectively
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Parameters

Parameters from the literature

• α = 0.5 to fit the share of intermediate (Jorgenson et al 1987, Jones 2011)

• σ = ǫ = 6 average of estimates (Broda et al 2006)

◮ Robustness with smaller ǫ in the paper

• log (zit) ∼ N
(
0, 0.392

)
from Bartelsman et al (2013)

• f × n = 5% to fit employment in management occupations

• Calibrate n = 3000 to match number of active firms in Atalay et al (2011)

Unobserved network Ω:

• Pick to match the observed in-degree distribution

• Generate thousands of such Ω’s and report averages

In-degree
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Shape of the network

What types of network does the planner choose?

• Compare optimal networks to completely random networks

• Differences highlights how efficient allocation shapes the network

Optimal networks Random networks

A. Power law shape parameters
In-degree 1.43 1.48
Out-degree 1.37 1.48

B. Measures of proximity
Clustering coefficient 0.027 0.018
Average distance between firms 2.26 2.64

Efficient allocation features

• More highly connected firms

• More clustering of firms

Def. clust. coeff.
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Cascades of shutdowns

Because of the complementarities between firms

• Exit of a firm makes it more likely that its neighbors exit as well ...

• ... which incentivizes the second neighbors to exit as well ...

• ...
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Resilience of firms

Magnitude of shock necessary to make a firm exit varies

Probability of firm shut down
after 1 std shock

All firms 92%
High out-degree firms 20%
High in-degree firms 56%

Implications:

• Highly-connected firms are hard to topple but upon shutting down they
create large cascades

Robustness
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Aggregate fluctuations

The shape of the network changes with the business cycle

Correlation with output

Model Data

CF (2008) AHRS (2011)

A. Power law shape parameters
In-degree -0.10 -0.10 -0.21
Out-degree -0.31 -0.24 -0.13

B. Clustering coefficient 0.47 0.70 0.15

Implications:

• Recessions are periods with fewer highly-connected firms and in which
clustering activity around most productive firms is costly
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Aggregate fluctuations

Size of fluctuations

Y = Q

(

L− f
∑

j

θj

)

Table: Standard deviation of aggregates

Output Labor Prod. Prod. labor
Y Q L − f

∑

j θj

Optimal network 0.039 0.039 0.0014
Fixed network 0.054 0.054 0

Implications:

• Substantially smaller fluctuations in optimal network economy comes from
the reorganization of network after shocks

Intuition
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Intuition

A given network θk is a function that maps z → Yk (z)
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Intuition

A given network θk is a function that maps z → Yk (z)

From extreme value theory

Var (Y ) = Var

(

max
k∈{1,...,2n}

Yk

)

declines rapidly with n

24 / 25



Conclusion

Additional results in the paper:

• Impact of position in the network on firm-level characteristics

• Endogenous skewness in distribution of employment, productivity, output

Summary

• Theory of network formation and aggregate fluctuations

• Propose an approach to solve these hard problems easily

• The optimal allocation features

◮ Clustering of activity

◮ Cascades of shutdowns/restarts

• Optimal network substantially limit the size of fluctuations
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• Propose an approach to solve these hard problems easily

• The optimal allocation features

◮ Clustering of activity

◮ Cascades of shutdowns/restarts

• Optimal network substantially limit the size of fluctuations
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Labor allocation

Lemma 2

The optimal labor allocation satisfies

l = (1− α) [In − αΓ]−1

︸ ︷︷ ︸

(1)

(
q

Q

)

︸ ︷︷ ︸

(2)

◦(σ−1)
(

L− f

n∑

j=1

θj

)

where In is the identity matrix and where Γ is an n × n matrix where

Γjk =
Ωjkq

ǫ−1
j

∑

n
i=1

Ωikq
ǫ−1
i

captures the importance of j as a supplier to k.

Determinants of lj

(1) Importance of j as a supplier

◮ Leontief inverse
(

[In − αΓ]−1 = In + αΓ + (αΓ)2 + . . .
)

(2) Relative efficiency
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Social Planner with Endogenous θ

P1 The alternative problem PRR is easy to solve

Proposition 3

If Ωij = cidj for some vectors c and d then the Karush-Kuhn-Tucker conditions

are necessary and sufficient to characterize a solution to PRR .

Proposition 4

Let σ = ǫ and suppose that f > 0 and z − z > 0 are not too big. If Ω is

sufficiently connected, then the Karush-Kuhn-Tucker conditions are necessary

and sufficient to characterize a solution to PRR .
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Social Planner with Endogenous θ

P2 A solution to the alternative problem PRR also solves PSP

Proposition 5

If θ∗ solves PRR and that θ∗j ∈ {0, 1} for all j , then θ∗ also solves PSP .

Solution θ∗ to PRR is such that θ∗j ∈ {0, 1} for all j (P2) if

• the (⋆) condition is satisfied

• there are many firms

• the network is sufficiently connected

Details
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Reshaping

Intuition:

• First-order condition on θj :

Marginal Benefit (θj ,F (θ))−Marginal Cost (θj ,G (θ)) = µ̄j − µ
j

• Under (⋆) the marginal benefit of θj only depends on θj through aggregates

• For large connected network F and G are independent of θj

Return FOCs
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Reshaping

Intuition:

• First-order condition on θj :

Marginal Benefit
(

✓✓❙❙θj ,✟✟✟❍❍❍F (θ)
)
−Marginal Cost

(

✓✓❙❙θj ,✟✟✟❍❍❍G (θ)
)
= µ̄j − µ

j

• Under (⋆) the marginal benefit of θj only depends on θj through aggregates

• For large connected network F and G are independent of θj
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Details of reshaping

Simpler to consider

P ′
RD : max

θ∈[0,1]n ,q

(
n∑

j=1

q
σ−1
j

) 1
σ−1

(

L− f

n∑

j=1

θj

)

qj ≤ Azjθ
a
j AB

α
j (LM: βj )

where Bj =
(∑n

i=1 Ωijθ
b
i q

ǫ−1
i

) 1
ǫ−1 .

First order condition with respect to θk :

∂qk
∂θk

∂Q

∂qk

(

L− f

n∑

j=1

θj

)

− fQ +

n∑

j=1

βj

(
∂qk
∂θk

∂Bj

∂qk
+

∂Bj

∂θk

)
∂qj
∂Bj

= µk − µ
k

The terms are

∂qk
∂θk

∂Q

∂qk
= zkaθ

a−1
k AB

α
k × (zkθ

a
kAB

α
k )

σ−2
Q

2−σ

∂qk
∂θk

∂Bj

∂qk
+

∂Bj

∂θk
= Bjθ

b−1
k Ωkj

(
zkθ

a
kAB

α
k

Bj

)ǫ−1(

a +
b

ǫ− 1

)
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Testing the approach on small networks

For small networks we can solve PSP directly by trying all possible vectors θ

• Comparing approaches for a million different economies:

Number of firms n

8 10 12 14

A. With reshaping
Firms with correct θj 99.9% 99.9% 99.9% 99.8%
Error in output Y 0.00039% 0.00081% 0.00174% 0.00171%

B. Without reshaping
Firms with correct θj 84.3% 83.2% 82.3% 81.3%
Error in output Y 0.84% 0.89% 0.93% 0.98%

Notes: Parameters f ∈ {0.05/n, 0.1/n, 0.15/n}, σz ∈ {0.34, 0.39, 0.44}, α ∈ {0.45, 0.5, 0.55},
σ ∈ {4, 6, 8} and ǫ ∈ {4, 6, 8}. For each combination of parameters 1000 different economies are created. For
each economy, productivity is drawn from log (zk ) ∼ iid N (0, σz ) and Ω is drawn randomly such that each link
Ωij exists with some probability such that a firm has on average five possible incoming connections. A network is
kept in the sample only if the first-order conditions give a solution in which θ hits the bounds.

The errors come from

• firms that are particularly isolated

• two θ configurations with almost same output
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Testing the approach on large networks

For large networks we cannot solve PSP directly by trying all possible vectors θ

• After all the 1-deviations θ are exhausted:

With reshaping Without reshaping

Firms with correct θj 99.8% 72.1%
Error in output Y 0.00028% 0.69647%

Notes: Simulations of 200 different networks Ω and productivity vectors z that satisfy the properties of the
calibrated economy.

• Very few “obvious errors” in the allocation found by the approach
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Distribution of in-degree
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Figure: Distribution of the number of suppliers and the number of customers

In-degree power law shape parameter

• Calibration: 1.43

• Data: 1.37 (Cohen and Frazzini, 2008) and 1.3 (Atalay et al, 2011)
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Figure: Distribution of in-degree and out-degree in Bernard et al (2015)

Figure: Distribution of in-degree in Atalay et al (2011)
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Clustering coefficient

• Triplet: three connected nodes (might be overlapping)

• Triangles: three fully connected nodes (3 triplets)

Clustering coefficient =
3× number of triangles

number of triplets
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Firm-level distributions
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Figure: Distributions of log (q)
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Cascades of shutdowns
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Figure: α = 0.75
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Figure: ǫ = 3
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Resilience

Probability of firm shutdown

Benchmark α = 0.75 ǫ = 3

All firms 92% 82% 32%
High out-degree firms 20% 8% 0%
High in-degree firms 56% 19% 15%
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