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1 Introduction

Rao(1982b)’s Quadratic Entropy (RQE)1 is a general approach to measuring diversity which

has been used extensively in fields such as statistics and ecology. In statistics, Rao (1982a,b)

and Nayak (1986a,b) used RQE to generalize the analysis of the variance; in ecology, several

studies used RQE as a biodiversity measure (Champely and Chessel, 2002; Pavoine, 2012;

Pavoine and Bonsall, 2009; Pavoine et al., 2005; Ricotta and Szeidl, 2006; Zhao and Naik,

2012). RQE has also been used by Stirling (2010) to study energy policy and define a

general framework for analysing energy diversity, while Nayak and Gastwirth (1989) have

also used RQE to analyze the relative effects of factors such as age, sex, and education on

the distribution of income.

Extending its use to portfolio theory, this paper proposes that RQE becomes the organizing

principle to measure portfolio diversification. To this end, we show that the RQE of a

portfolio (portfolio RQE) has four characteristics that make it particularly appropriate

for that function: (i) it meets ex-ante desirable properties of diversification; (ii) it unifies

several portfolio diversification measures and utility functions that have been analyzed in

the literature, giving them a common, theoretically-grounded interpretation as special cases

or function of RQE; (iii) it provides a flexible but formal approach for fund managers to

develop new, diversified portfolios and (iv) it can provide protection from systemic as well

as idiosyncratic risk.

Diversification is at the core of portfolio selection in Modern Portfolio Theory (MPT), yet

there exists no formal definition for this concept and, as a result, no unique measure to

quantify the degree to which a given portfolio is diversified. Developing an “ideal ”measure

of portfolio diversification is therefore an active research area in investment management

and we show that portfolio RQE possesses necessary properties to be this measure.

The remainder of this paper is organized as follows. Section 2 reviews the existing literature

on measures of portfolio diversification and suggests that it lacks a formal, unifying measure.

Section 3 defines portfolio RQE, describes how to select the optimal portfolio in that context,

and presents some particular cases. Section 4 and 5 discuss the main properties of portfolio

RQE and portfolios optimized according to this criterion. Section 6 provides an empirical

1RQE is also referred to as Diversity Coefficient (Rao, 1982b) or Quadratic Entropy (Rao and Nayak,
1985).
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illustration of the capacity of portfolio RQE to protect from mass destruction (systemic

risk). Section 7 concludes.

2 Portfolio Diversification Measures

The first mathematical formalization of diversification in portfolio selection analysis dates

back to the mean-variance model of Markowitz (1952). Although it analyzes the idea of

portfolio diversification, the model does not provide a specific measure of portfolio diversi-

fication. Thus, it does not answer the simple question of whether a specific portfolio is well

diversified.

Since Markowitz (1952), several measures of diversification have been proposed in the liter-

ature, each based on a different criterion. Using the Capital Asset Pricing Model (CAPM),

Evans and Archer (1968) suggest portfolio size. Sharpe (1972)’s measure is based on port-

folio idiosyncratic risk. Fernholz and Shay (1982) introduce the excess growth rate, also

known as diversification return (see Booth and Fama, 1992; Bouchey et al., 2012; Chambers

and Zdanowicz, 2014; Qian, 2012; Willenbrock, 2011), while Woerheide and Persson (1993)

appeals to the Gini-Simpson (GS) index of the portfolio. More recently, Statman and Scheid

(2005) base their proposed measure on the return gaps (RG), Rudin and Morgan (2006)

develop portfolio diversification indices (PDI) derived from principal component analysis

(PCA), Choueifaty and Coignard (2008) recommend their diversification ratio (DR), Goet-

zmann et al. (2005) and Goetzmann and Kumar (2008) put forward their portfolio variance

normalized while Meucci (2009) and Meucci et al. (2014) analyze measures based on the

effective number of bets (ENB) using a PCA, a minimum torsion bets and Shannon entropy.

Finally, Vermorken et al. (2012) have developed the diversification delta, a higher-moment

measure for portfolio diversification using Shannon entropy.2

However, none of the above measures have proven totally satisfactory. For instance, portfo-

lios based on Sharpe (1972)’s measure may be formed with assets having similar high betas,

leaving them exposed to market risk. The GS index is useful only when zero information is

available on the various assets and naive diversification (i.e. equal weights) is optimal. The

DR has been criticized by Lee (2011) and Taliaferro (2012) for not being associated with a

clear objective function so that a DR-maximizing portfolio “only has desirable properties

2For more details on portfolio diversification measures since Markowitz (1952), see Frahm and Wiechers
(2011), Fragkiskos (2013),Pola (2013) and Carli et al. (2014).
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by accident ”(Taliaferro, 2012). The ENB has two major shortcomings : it does not distin-

guish between negative and positive correlation (and thus cannot incorporate the benefits

arising from negative correlation) and it can only be computed if portfolio risk is measured

by its variance or volatility, which are adequate measures of risk only in the unlikely case

that asset returns are normally distributed (Embrechts et al., 1999).

Developing a unifying, theoretically-motivated approach to measure portfolio diversification

is therefore an important research goal. This paper proposes portfolio RQE as such an

approach. We show that doing so has four important advantages. First, portfolio RQE

satisfies properties deemed desirable for a measure of portfolio diversification. In particular,

it verifies i) Choueifaty et al. (2013)’s duplication invariance property, ii) Markowitz (1952)’s

property that a portfolio of less dissimilar assets is likely to offer less diversification than one

of more dissimilar assets, and iii) portfolio RQE can be decomposed across assets class and

times periods, allowing it to be fully consistent with the old adage “don’t put all your eggs

in one basket ”(see for example Markowitz et al., 2009, pp. 12). Second, portfolio RQE is an

unifying approach. We prove that it is the core around which existing measures of portfolio

diversification (the diversification ratio, the portfolio variance normalized, the diversification

return or the excess growth rate, the Gini-Simpson index, the return gap) are built. Third, it

provides fund managers with a flexible but formal approach for the construction of portfolios

diversified according to a variety of characteristics. Fourth, portfolios optimized according

to portfolio RQE (RQE portfolios or RQEP in short) offer protection both from asset-

specific shocks (systematic risk) as well as mass destruction (systemic risk). Section 6

of the paper provides an empirical illustration of the capacity of RQEP to protect from

mass destruction, by comparing the in-sample and out-sample performance of four RQEP

relative to those of the most popular existing diversified portfolios. Using two performance

measures (portfolio return during bear markets and portfolio market beta), we show that

RQEP dominates existing measures.

3 Definition of Portfolio Rao’s Quadratic Entropy and its Optimal Portfolios

We begin by reviewing the general formulation of RQE. Let Ω be a population of individuals.

Suppose that each individual in Ω is characterized by a set of measurement X and denote

by P the probability distribution function of X. Rao (1982b) defines the RQE of Ω as the
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average difference between two randomly drawn individuals from Ω:

H(P ) =

∫
d(X1, X2)P (dX1)P (dX2), (3.1)

where the non-negative, symmetric “dissimilarity ”function d(., .) expresses the difference

between two individuals from Ω. When X is a discrete random variable, H(P ) becomes

H(P ) =
N∑
i,j

dijpi pj , (3.2)

where pi = P (X = xi), ∀ i = 1, ..., N .

As can be noted, RQE differs from other entropy measures used in finance, such as Shannon

entropy and Tsallis Entropy (Zhou et al., 2013), by the fact that it incorporates not only the

relative abundance of individuals pi, but also the intrinsic difference between individuals,

dij . This is the source of its attraction and flexibility.

3.1 Portfolio RQE

We now extend the definition of RQE to portfolio selection, using the discrete version

(3.2) because it is more naturally suited to portfolio selection. To do so, we must define

the relevant population and its individuals, as well as specify the random variable X, its

distribution probability function P , and the dissimilarity function, d(., .).

Consider an universe U = {Ai}Ni=1 of N different assets, and denote by w = (wi)
N
i=1 a

specific long-only portfolio, where wi is the weight of asset i in w, so that each portfolio w

can be viewed as a population of individuals assets. Next, define the random variable X to

take the finite values 1, ..., N (N assets) and its probability distribution P (X = i) = wi, ∀ i,

so that it is associated to the random experiment whereby assets are randomly selected

(with replacement) from portfolio w. Finally, specify D = (dij)
N
i,j=1 as the dissimilarity

function measuring the difference between any two assets of the portfolio, with D satisfying

the following conditions : dij ≥ 0, ∀ i, j = 1, ..., N ; dij = dji, ∀ i, j = 1, ..., N ; dii = 0, ∀ i =

1, ..., N . For the purpose of this paper, we also consider D to be independent from X.

Given a portfolio w and the dissimilarity matrix D = (dij)
N
i,j=1, the RQE of a portfolio w is

defined as half of the average difference between two randomly drawn (with replacement)
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assets from w, as follows:

HD(w) =
1

2

N∑
i,j=1

dij wiwj . (3.3)

Furthermore, if D is conditionally negative definite, HD is concave and following Rao and

Nayak (1985) HD(w) can be rewritten as

HD(w) =
1

2

N∑
i=1

wiDHD

(
wi, w

)
(3.4)

where wi is the ith single-asset portfolio (wii = 1 and wij = 0, j 6= i) and

DHD

(
wi, w

)
= 2HD(wi, w)−HD(wi)−HD(w), (3.5)

is a symmetric cross entropy associated to HD and represents a dissimilarity on W measur-

ing a difference between two portfolios, and its squared root an Euclidean distance, with

HD(wi, w) = w>Dwi. This alternative definition facilitates the interpretation of HD(w):

it is a measurement of the average difference between portfolio w and the single asset port-

folios : the closer w is to the single portfolios, the less diversified it is and the smaller the

index HD(w); conversely the further w is from the single portfolios, the more diversified it

is and the higher is HD(w). Given two portfolios, portfolio managers will prefer that which

has a high portfolio RQE as is less close to the single asset portfolios.

Another interpretation of portfolio RQE is in terms of the average degree of information

concentration. Under this interpretation, dij measures the quantity of unshared information

of assets i and j. Then, the less dissimilar assets are, the more concentrated is a portfolio

in terms of information and the lower is portfolio diversification as measured by portfolio

RQE. In the extreme case where all assets are perfectly similar (dij = 0, ∀ i, j), the degree

of diversification is nil and portfolio RQE is zero with HD(w) = 0. Since portfolio RQE

also takes the value zero for a single asset portfolio, portfolio RQE can be interpreted as

a measure of information concentration and fund managers will prefer portfolios that have

high portfolio RQE. Furthermore, when dij are normalized in the range [0, 1], the effective

number of independent risk factors in a portfolio w, similar to Bouchaud and Potters (2000)
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and following Ricotta and Szeidl (2009), can be measured by

NRQE
eff (w) =

1

1− 2HD(w)

As we can see, NRQE
eff generalizes Bouchaud and Potters (2000, p. 111)’s measure since HD

generalizes the Gini-Simpson index as we will be seen in Subsection 3.3.

Remark 3.1. A formal proof that portfolio RQE is a measure of portfolio concentration in

terms of information can be provided using Theorem 1 of Bavaud (2010).

Remark 3.2. Portfolio managers can make this choice using a standard two independent

samples t-test. Indeed, consider the random experiment which consists of randomly selecting

with replacement two assets from a portfolio. Define Z as the discrete random variable

equal to the dissimilarity between the two assets drawn, so that Z takes a finite number of

values dij , i, j = 1, ..., N . The probability distribution of Z is P (Z = dij) = wiwj. One

can show that portfolio RQE is half of the mean of Z. Comparing two portfolio RQE is

therefore similar to comparing the mean of two random variables, and this comparison can

be conducted using the test statistic

T =
µZ(w)− µZ(w)√
S2
Z(w)
NZ

+
S2
Z(w)
NZ

where NZ = 2 Nw!
2!(Nw−2)! is the number of values Z can take with Nw portfolio w size, NZ =

2 Nw!
2!(Nw−2)! the number of values Z can take with Nw portfolio w size, µZ(w) = 2HD(w) a

mean of Z, µZ(w) = 2HD(w) a mean of Z, S2
Z(w) = 2HD2(w) − (2HD(w))2 a variance

of Z and S2
Z(w) = 2HD2(w) − (2HD(w))2. The distribution of T is approximated as an

ordinary Student’s t distribution with the degrees of freedom calculated using

df =

(
S2
Z(w)
NZ

+
S2
Z(w)
NZ

)2
S4
Z(w)

N2
Z (NZ−1)

+
S4
Z(w)

N2
Z (NZ−1)

This test is applicable only if NZ , NZ ≥ 30. That is the case when Nw, Nw ≥ 6, which is

generally the case.
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3.2 RQE Portfolios

Portfolio RQE optimal portfolios (RQE portfolios or RQEP in short) is therefore defined

as

wRQE ∈ arg Max
w∈W

HD(w), (3.6)

i.e., the portfolios that minimize the information concentration, or that maximize the effec-

tive number of independent risk factors, with W is the set of long-only portfolios.

Rao (1982b), Pavoine et al. (2005) and Pavoine and Bonsall (2009) discuss the conditions

under which problem (3.6) has a solution. They show that when HD is concave, a global

maximum exists

wRQE =
D−11

1>D−11

where the solution wRQE is interior, 1 is a vector column of one . Pavoine et al. (2005)

shows that wRQE is unique when D is ultrametric. When D is not conditionally negative

definite, the problem (3.6) still has a solution.

Remark 3.3. The Definitions (3.3) and (3.6) can be extended to the case of short sales at

the price of some additional complexities.

As we can observe from (3.6), the optimal RQE portfolio is solely determined by asset

dissimilarity; in particular, asset i’s weight wRQEi is a strictly increasing function of the

asset’s dissimilarity contribution as shown in Proposition 3.1.

Proposition 3.1. Let two assets i and j held in the RQEP i.e. wRQEi , wRQEj > 0. Then

1. DCi
(
wRQE

)
< DCj

(
wRQE

)
⇐⇒ wRQEi < wRQEj .

2. DCi
(
wRQE

)
= DCj

(
wRQE

)
⇐⇒ wRQEi = wRQEj .

where

DCi
(
wRQE

)
=

N
wRQE∑
k=1

dik

is the dissimilarity contribution of an asset i held in the RQEP, with NwRQE the number of

assets held in the RQEP.

Proof of Proposition 3.1. See Appendix A.1. �
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Proposition 3.1 implies that RQEP spreads eggs by putting more eggs in more dissimilar

baskets and fewer eggs in less dissimilar baskets. As a result, holding RQEP can help reduce

losses during bear markets or financial crises, since the more dissimilar are the baskets, the

less is the probability that they do poorly at the same time in the same proportion.

Remark 3.4. Proposition 3.1 implies that RQEP avoids overweight in terms of informa-

tion.

3.3 Particular Cases

Equation (3.3) constitutes a general definition of portfolio RQE but in practice, one needs

to specify the dissimilarity matrix D. We present four alternative specifications of D, of

which three are taken within the perimeter of the mean-variance paradigm.

3.3.1 Gini-Simpson Index

Suppose that D is specified such as

dij = d (1− δij), (3.7)

where δij is Kronecker’s delta and d is a strictly positive constant. In that case, portfolio

RQE is equivalent to the Gini-Simpson index, a weight-based measure commonly used in

the literature (Cazalet et al., 2014; Woerheide and Persson, 1993; Yanou, 2010). As a result,

portfolio RQE generalizes the Gini-Simpson index and it resolves some of its shortcomings

as a measure of portfolio diversification.3

Now, suppose that d = 2σ20 (1− ρ0), N = 2 and w1 = w2 = 1
2 . Then, HD(w) becomes

HD

(
1

N

)
=

1

2
σ20(1− ρ0), (3.8)

3Frahm and Wiechers (2011) point out that the Gini-Simpson’s main problems is related to the axiom-
atization of concentration measures, especially in the axioms of symmetry and monotonicity. For example,
the axiom of symmetry implies that “the portfolio weights can be exchanged without any alteration of the
degree of diversification”. This implies exchangeability of the distribution of the asset returns without any
alteration of the degree of diversification, a result not supported by the GS index.
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where σ0 is asset volatility and ρ0 its correlation. Taking the square root of (3.8):

√
HD

(
1

N

)
= σ0

√
1− ρ0

2
. (3.9)

The right side of the above equality is the return gaps (RG), a portfolio diversification

measure introduced under the name of “dispersion”by Statman and Scheid (2005) as an

alternative to the use of correlation, and later expanded upon by Statman and Scheid

(2008). Equation (3.9) thus shows that portfolio RQE also generalizes the RG.

3.3.2 Diversification Return or Excess Growth Rate

Suppose that D is based on the asset returns covariance matrix such that

dij = σ2i + σ2j − 2σij , (3.10)

where σi is the variance of asset i and σij is the covariance between asset i and j. In that

case,

HD(w) =
1

2

N∑
i,j=1

(σ2i + σ2j − 2σij)wiwj , (3.11)

and one can show that portfolio RQE is equivalent to diversification return (Booth and

Fama, 1992; Willenbrock, 2011) or the excess growth rate (Fernholz, 2010; Fernholz and

Shay, 1982).4 Portfolio RQE therefore also generalizes the diversification return and illus-

trates that this measure takes its source in RQE diversification in the spirit of Markowitz

(1952)’s idea, as opposed to diversification as traditionally defined in the CAPM.5

4The diversification return (Dr) is defined by Booth and Fama (1992) as the difference between the
portfolio compound return and the weighted average asset compound return. An equivalent concept was
previously introduced under the name of excess growth rate by Fernholz and Shay (1982) and it now
commonly used in literature (for a detailed review see Chambers and Zdanowicz, 2014) . The mathematical
formula of the diversification return is

Dr(w) =
1

2

(
w>σ2 − w> Σw

)
.

Booth and Fama (1992) argue that the diversification return is assured only if the investor maintains rel-
atively fixed asset weights and its may be lost by engaging in active management. Willenbrock (2011),
Qian (2012) and Bouchey et al. (2012) argue that it is due to rebalancing and diversification. Chambers
and Zdanowicz (2014) argue that “not diversification as traditionally defined, that generates diversification
return”, and diversification return provided increased expected value only if prices are mean-reverting.

5See Chambers and Zdanowicz (2014) for a discussion.
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3.3.3 Portfolio variance

Take particular case 3.3.2 and suppose further that assets have equal volatility, normalized

to one. As a result, D is based on the matrix of asset returns correlation ρ = (ρij)
N
i,j=1

dij = 2(1− ρij), (3.12)

so that portfolio RQE becomes

HD(w) =
N∑

i,j=1

(1− ρij)wiwj . (3.13)

As we can observe, HD is a decreasing function in ρij and portfolio RQE diversification

vanishes if assets are perfectly correlated. Thus, portfolio RQE embodies the intuition that

low correlation implies a high degree of diversification.

Finally, one can show that portfolio RQE is equivalent to portfolio variance when the

assets’ volatilities are identical. In that case portfolio variance belongs to the larger family

of portfolio RQE and diversify under RQE coincides exactly with risk reduction, where

risk is measured by portfolio variance. Under the same conditions, one can also show that

portfolio RQE is equivalent to the diversification ratio (DR) and the portfolio variance

normalized (NV).

3.3.4 Factor Diversification

The particular cases discussed so far are based only on D taken within the perimeter

of the mean-variance paradigm. However, D can be made to depend on various other

asset characteristics, such as higher moments of assets returns, rank correlations, copula-

based dependences, Granger causality, linear partial correlation, tail dependences, asset

liquidity characteristics, etc, individually or simultaneously. Here, we present an example

of specification of D not taken within the perimeter of the mean-variance paradigm.

Consider the multifactor model for asset returns

Rit = αi +

K∑
k=1

βkifkt + εit

11



where Rit is the return of asset i in time period t, fkt is the kth common factor, βki is the

factor loading for asset i on the kth factor and εit is the asset specific factor. Using standard

assumptions (error terms εit are serially and contemporaneously uncorrelated across assets

as well as uncorrelated with the common factors, fkt, which one themselves are orthogonal)

the matrix D can be specified as

D = (1− θ)DCF + θ DSF ,

with dCFij =
∑K

k=1(βki − βkj)
2 and dSFij specified as (3.12). The corresponding portfolio

RQE is

HD(w) = (1− θ)HDCF (w) + θHDSF (w),

where HDCF (w) measures diversification across factors (fkt) and betas. It can be used to

construct a well-diversified portfolio free from risk if there is no essential factor risk.6 For

its part, HDSF (w) measures the diversification across the specific factor εit. The parameter

θ ∈ [0, 1] can be interpreted as the investor’s aversion toward specific risk : the higher is θ,

the greater is aversion towards specific risk and the lower it is towards systematic risk.

3.4 Summary

Three main conclusions can be drawn from the above discussion. First, portfolio RQE is un-

ambiguously a valid diversification measure. Second, portfolio RQE is a unifying approach

that generalizes the Gini-Simpson Index, the diversification return or excess growth rate,

as well as portfolio variance, diversification ratio, portfolio variance normalized and return

gaps under some conditions. Third, portfolio RQE provides a flexible but formal approach

to develop diversified portfolios according to any kind of assets characteristics. This is a

major advantage of portfolio RQE, not present in existing measures that allows it to “fully

describe portfolio diversification contrary to what is believed in literature. ”7

6See Ingersoll (1984) for details concerning the construction of a well-diversified portfolio free from risk.
7In the literature (Pola, 2014a,b), it believes that a single measure can not fully describe portfolio diver-

sification, since portfolio diversification should be addressed from many angles.
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4 Proprieties of Portfolio RQE

This section reviews some proprieties of portfolio RQE that are deemed desirable for a

measure of portfolio diversification.

4.1 Degeneracy relative to portfolio size

Property 1 (Degeneracy relative to portfolio size). A single asset portfolio must have

the lowest diversification degree.

The desirability of Property 1 comes from the usual qualitative definition of portfolio di-

versification: “don’t put all your eggs in one basket ”, an adage which is violated when

Property 1 is not verified. The following proposition establishes that portfolio RQE verifies

this property.

Proposition 4.1. Let w be a portfolio and wi be the ith single asset portfolio i.e wii =

1 and wij = 0 j 6= i. Then

HD(w) ≥ HD(wi) = 0, ∀ i = 1, ..., N.

Proof of Proposition 4.1. See Appendix A.2. �

Example of portfolio diversification measures that do not verify this property include port-

folio variance and the portfolio diversification index (PDI). By contrast, measures that do

verify it include the portfolio size, the Gini-Simpson (GS) index, the Shannon index and

the diversification ratio (DR).

4.2 Degeneracy relative to dissimilarity

Property 2 (Degeneracy relative to dissimilarity). A portfolio formed solely with per-

fectly similar assets must have the lowest diversification degree.

Once again, the desirability of this property arises from the adage “don’t put all your eggs

in one basket”, and not respecting Property 2 violates the adage. Proposition 4.2 shows

that portfolio RQE verifies this property.
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Proposition 4.2. Consider a universe U of assets formed solely with the same assets (U =

{Ai}Ni=1 such as Ai = A, ∀ i = 1, ..., N) and w a portfolio. Then

HD(w) = 0.

Proof of Proposition 4.2. See Appendix A.3.�

From Proposition 4.2, we can deduce that a portfolio formed solely with the same assets is

equivalent to a single asset portfolio. Therefore, portfolio RQE is unbiased towards asset

total multi-representation or asset total duplication.

Examples of portfolio diversification measures that do not verify this property include port-

folio size, the GS index and the Shannon index. By contrast, measures that do verify it

include the DR with dissimilarity equal to (3.12).

4.3 Duplication Invariance

Property 3 (Duplication Invariance (Choueifaty et al., 2013)). Consider a universe

where an asset is duplicated (for example, due to multiple listings of the same asset). An un-

biased portfolio construction process should produce the same portfolio, regardless of whether

the asset was duplicated.

The intuition behind this property, proposed by Choueifaty et al. (2013) as desirable for

diversification, is as follows. Consider a universe U = {A,B} of two assets. From U ,

derive a new universe U = {A,A,B} where asset A is duplicated. The duplicate invariant

stipulates that the universes U and U must have the same diversification degree, and the

weight of asset A of U must be equal to the sum of those of assets A of U . The following

Proposition shows that portfolio RQE verifies this property.

Proposition 4.3. Let U = {Ai}Ni=1 a universe of N assets and U = U ∪ {B} a new

universe of N + 1 assets such that asset B is a duplication of an asset Ak, k ∈ {1, ..., N}.

Let wRQE and wRQE denote the weights of RQEP associated to U and U , respectively.

Then

HD

(
wRQE

)
= HD

(
wRQE

)
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and

wRQEAi
= wRQE

Ai
, i 6= k and wRQEAk

= wRQE
Ak

+ wRQE
B .

Proof of Proposition 4.3. See Appendix A.4. �

Examples of portfolio diversification measures that do not verify this property include port-

folio size, the GS index, the Shannon index and the effective number of bets (ENB) (see

Pola, 2014a,b, for details). By contrast, the DR and the portfolio variance verify Property 3

(see Choueifaty et al., 2013, for details).

Remark 4.1. Property 3 implies Property 2.

4.4 Non decreasing in portfolio size

Property 4 (Non decreasing in portfolio size). An increase in portfolio size does not

decrease the degree of portfolio diversification.

This property is seen desirable by Markowitz (1952, p. 89): “The adequacy of diversification

is not thought by investors to depend solely on the number of different securities held. ”The

following shows that portfolio RQE verifies this property.

Proposition 4.4. Let U a universe of N assets and U a universe of N + 1 assets, derived

from U by increasing the size of U from N to N + 1. Then

HD

(
wRQE

)
≥ HD

(
wRQE

)
.

Proof of Proposition 4.4. See Appendix A.5.�

Examples of portfolio diversification measures that do not verify this property include port-

folio size, the GS index and the Shannon index, while the DR, the PDI and the portfolio

variance verify it.

Remark 4.2. Portfolio size uniquely determines portfolio RQE if and only if dissimilarity

between assets is constant, i.e. dij = d, ∀ i, j = 1, ..., N with d a constant. In that case,

it is straightforward to show that RQEP coincides with the equally-weighted portfolio and
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HD

(
1
N

)
is the following increasing function of portfolio size:

HD

(
1

N

)
=
N − 1

2N
d.

4.5 Non decreasing in dissimilarity

Property 5 (Non decreasing in dissimilarity). A portfolio of less dissimilar assets is

likely to offer less diversification than one of more dissimilar assets.

This property is seen desirable by:

1. Markowitz (1952, p. 89): “A portfolio with sixty different railway securities, for

example, would not be as well diversified as the same size portfolio with some railroad,

some public utility, mining, various sort of manufacturing, etc. The reason is that it

is generally more likely for firms within the same industry to do poorly at the same

time than for firms in dissimilar industries. ”;

2. Sharpe (1972, p. 75): “... For example, a portfolio of ten chemical securities is likely

to offer less effective diversification than one of ten securities, each from a different

industry. This type of difference is difficult to capture in a simple formula. ”;

3. Klemkosky and Martin (1975, p. 153), but in the context of single factor model:

“... the levels of diversification achieved for high versus low beta portfolios for a

given portfolio size were significantly different with high beta portfolios requiring a

substantially larger number of securities to achieve the same level of diversification as

a low beta portfolio. ”.

Portfolio RQE easily verifies this property via the dissimilarity matrix D. For illustrating

purposes, consider the simplest case where w is a naive portfolio (w = 1/N), and portfolio

RQE is an increasing function of portfolio total dissimilarity, DT =
∑N

i,j=1 dij . More

dissimilar portfolios (higher value of DT ) are therefore more likely to offer diversification

than less dissimilar portfolio (lower value of DT ).

Examples of portfolio diversification measures that do not verify this property include port-

folio size, the GS index, the Shannon index and the DR.
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4.6 Portfolio RQE Decomposition

In addition, portfolio RQE also has the property to be decomposed across asset class and

across time periods.

4.6.1 Asset Class Decomposition.

Suppose there are K asset classes and each class k has Nk single assets. Suppose further

that portfolio RQE is concave. Then, following Rao (1982a), portfolio RQE can be decom-

posed into the sum of the weighted average of the dissimilarity within asset classes and the

weighted average of the dissimilarity between all pairs of asset classes

HD(w) =
1

2

K∑
k=1

nkHD,k(wk) +
1

2

K∑
k=1

K∑
l=1

nk nlDHD(wk, wl), (4.1)

where nk is the share of capital invested on the asset class k and wk,i is the share of

Nk invested on the asset i of the asset class k (wi = nk wk,i). Portfolio RQE therefore

incorporates a trade-off between diversification within asset classes (the first term), and

diversification between all pairs of asset classes (the second term).

Using (4.1), one can measure diversification within asset classes as follows :

HD,within ≡
1

2

∑K
k=1 nkHD,k(wk)

HD(w)
,

and diversification between all pairs of asset classes as follows

HD,between ≡
1

2

∑K
k=1

∑K
l=1 nk nlDHD(wk, wl)

HD(w)

with the contribution of an asset class k being

RQECk ≡
1

2

nkHD,k(wk) +
∑K

l=1 nk nlDHD(wk, wl)

HD(w)
.

Decomposition (4.1) can also be used to focus on diversification between all pairs of asset

classes by setting portfolio wk constant. To illustrate, assume that D is specified by (3.10)
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and set wk = 1
N , ∀ k = 1, ...,K. One can show that

HD(w) =
1

2
HD,k

(
1

N

)
+HDK×K (n),

where σ2k is the variance of the equal weighted average returns in asset class k, and

HDK×K (n) =
1

2

K∑
k=1

K∑
l=1

nk nl (σ
2
k + σ2l − 2σkl).

Since HD,k

(
1
N

)
is constant, maximizing HD(w) is equivalent to maximizing HDK×K (n),

which is portfolio RQE at the asset class level. Portfolio RQE is thus a useful tool to study

diversification within and between asset classes.

Remark 4.3. In (4.1), the first stage of decomposition is at the single-asset level and the

second stage is at the level of assets class. Portfolio RQE can also be decomposed at N

levels (see Rao, 2004). Therefore, in applications, portfolio RQE can be a useful tool to

simultaneously study diversification at the country, industry, assets class level, etc.

4.6.2 Time Decomposition.

Another possible decomposition of portfolio RQE is at the level of time periods. Consider

the following example. Suppose that the matrix D is defined by (3.10). In that case, one

can show that

HD(w) =
N∑
i=1

wi‖yit − yt‖2, (4.2)

where yit = Rit − µi, yt =
∑N

i=1wiyit and ‖.‖ is the Euclidean norm. By rearranging (4.2),

one obtains

HD(w) =

∑T
t=1 σ

2
t (w)

T
, (4.3)

where

σ2t (w) =
N∑
i=1

wi(yit − yt)2,

is asset returns variance at period t. Using (4.3), one can measure period t’s diversification

contribution by

RQECt =
σ2t (w)∑T
t=1 σ

2
t (w)

.
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RQECt can be used to identify periods with higher diversification potential, as well as to

compare two bear market periods and two bull market periods.

Remark 4.4. RQECt cannot be used to compare a bear market period with a bull market

period. This is because dissimilarities between assets are low during extreme bear and bull

market, and so is the value of HD(w). From the perspective of diversification, portfolio

RQE therefore reveals that bull and bear markets are similar.

4.7 Summary

Properties 1 to 5, as well as the decomposition properties in Subsubsections 4.6.1 and 4.6.2

are deemed desirable for a measure of portfolio diversification. In particular, the Properties 1

to 5 are necessary for a measure to be portfolio diversification measure. This section has

shown that portfolio RQE verifies all these requirements, and is a useful tool to study

diversification while being consistent with the old adage “don’t put all your eggs in one

basket”. Indeed, the old adage is the most used definition of portfolio diversification (see

for example Markowitz et al., 2009, pp. 12) and is usually understood as meaning to

spread eggs (dollars) across many baskets. However, this interpretation is misleading (Carli

et al., 2014). To illustrate, consider one portfolio that allocates 100% of the wealth on

asset A and a second portfolio of two assets A, B that allocates 50% of the wealth on

each asset, with B a duplication of A. According to the traditional interpretation of the

adage, the second portfolio appears more diversified than the first, but this is not true;

spreading eggs across basket A and basket B is equivalent to putting all your eggs in

basket A, since B is a duplication of A. This illusion is eliminated when proper account

of asset dissimilarity is taken. In that context the old adage should rather be seen as

the prescription to spread all your eggs (dollars) across many baskets while taking into

account basket dissimilarity (as recommended implicitly in Markowitz (1952, p. 89)). More

precisely, it should be seen as the prescription to spread your eggs (dollars) across many

baskets by putting more eggs in more dissimilar baskets and fewer eggs in less dissimilar

baskets. A portfolio diversification measure consistent with the old adage therefore needs

to verify Properties 1 and 2, and Proposition 3.1. This is the case of portfolio RQE and this

section strengthens our proposition that it is a valid measure of portfolio diversification.
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5 Properties of RQE Portfolios

This section first establishes two equivalent definitions of RQEP, which we call Core Prop-

erty 1 and Core Property 2. From these definitions, more intuitive interpretations of RQEP

are provided and portfolio RQE diversification criteria are deduced. Second, this section

establishes the conditions under which RQEP are mean-variance optimal, and shows how

to use portfolio RQE when RQEP are mean-variance sub-optimal.

5.1 The Core Properties of RQEP

The first order conditions for optimization of portfolio RQE are

N∑
j=1

dijw
RQE
j = η − νi, ∀ i = 1, ..., N, (5.1)

w>1 = 1, (5.2)

min(wi, νi) = 0, ∀ i = 1, ..., N, (5.3)

where η is the Lagrange multiplier of the constraint w>1 = 1, νi the Lagrange multiplier of

the ith non-negativity constraint and 1 is a column vector of ones. From the conditions (5.1)-

(5.3), two equivalent definitions can be provided for RQEP. The first definition provides a

very intuitive interpretation of the nature of RQEP and is established in Proposition 5.1.

Similarly to Choueifaty et al. (2013), we call it the Core Property (1) of RQEP.

Proposition 5.1 (Core Property (1)). RQEP is the portfolio such that:

1. the dissimilarity between any asset i that belongs to the RQEP and itself is equal to

its portfolio RQE i.e.

DHD

(
wRQE , wi

)
= HD

(
wRQE

)
, ∀ i/wRQEi > 0. (5.4)

2. the dissimilarity between any asset j that does not belong to the RQEP and itself is

smaller than its portfolio RQE i.e.

DHD

(
wRQE , wj

)
< HD

(
wRQE

)
, ∀ j/wRQEj = 0. (5.5)
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Proof of Proposition 5.1. See Appendix A.6. �

Accordingly,

DHD

(
wRQE , wj

)
< DHD

(
wRQE , wi

)
i 6= j, (5.6)

and

DHD

(
wRQE , wi

)
= DHD

(
wRQE , wk

)
, ∀ i, k /wRQEi , wRQEk > 0. (5.7)

Equation (5.6) brings a justification to the concentration (in terms of the number of assets

held) of RQEP. It shows that an asset can be effectively held even if it is not physically

held. Portfolio RQE therefore can reduce transaction costs without lowering a portfolio’s

diversification. Equation (5.7) shows that, contrary to the equally-weighted portfolio and

to the equally-risk contribution portfolio (in which the diversification is expressed in terms

of weight and risk respectively) the diversification in RQEP is expressed in terms of dissim-

ilarity between the single-asset portfolio and RQEP and can be defined as follows:

Definition 5.1 (Dissimilarity-Diversification Criteria). A portfolio is RQE well-diversified

if and only if:

1. it is as far as possible from all assets that belong to it.

2. it is “equidissimilar ”from all assets that belong to it.

The intuition behind this criteria is that in principle, a portfolio needs to be close to

assets with desirable properties (such as high expected return and low risk in the mean-

variance paradigm) and far from assets with undesirable ones (low expected return and

high volatility). However, when there isn’t enough information to distinguish assets with

desirable properties from those with undesirable ones, the optimal attitude to adopt for a

portfolio manager is to be neutral. Being neutral involves constructing a portfolio having the

following properties: first, all assets that belong to the portfolio must be as far as possible

from it. Second, all assets that belong to it must be “equidissimilar ”from it. This attitude is

natural and serves to protect RQEP from both asset individual shocks (second condition of

Definition Definition 5.1) and mass destruction (first condition of Definition Definition 5.1).

As a result, portfolio RQE diversification serves as protection against ignorance, but which

kind of ignorance? We answer this question in the next sub-section using the mean-variance

paradigm.
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Equation (5.4) also shows that the more RQEP is diversified, the higher is the dissimilarity

between RQEP and an asset held in it. This means that the philosophy behind RQE

diversification is to beat the single-asset portfolios, the least diversified portfolios, which

comes as no surprise considering Equation (3.4).

Core Property (1) is equivalent to the following alternative definition, which we call Core

Property (2) of RQEP similarly to Choueifaty et al. (2013).

Proposition 5.2 (Core Property (2)). RQEP is the portfolio such that the dissimilarity

between any other portfolio and itself is smaller than or equal to the difference of their

portfolio RQEs i.e.

DHD

(
wRQE , w

)
≤ HD

(
wRQE

)
−HD(w).

Proof of Proposition 5.2. See Appendix A.7.�

Accordingly, the more diversified an arbitrary long-only portfolio w is, the smaller its dis-

similarity from RQEP. In particular, when we have more than one RQEP, all have a dis-

similarity of zero between themselves, so that all RQEP are equivalent. Holding one rather

than any other does not affect the degree of diversification (or protection) offered by RQEP.

Conventional wisdom however suggests that in this case the least concentrated (in terms of

weights) must be preferred.

5.2 Optimality of RQEP in Mean-Variance Framework

This subsection discusses the choice of D in the mean-variance paradigm. We argue that the

choice of D in MPT must depend on the quantity and the quality of available information

as well as asset characteristics that the investor wants to take into account.

Within the mean-variance paradigm, the complete set of relevant asset characteristics are

the vector of asset expected returns µ = (µi)
N
i=1, the vector of asset volatilities σ = (σi)

N
i=1

and the matrix of correlation between asset returns ρ = (ρij)
N
i,j=1, and the complete infor-

mation set can be defined by I = {µ, σ, ρ}.

No Information Available (I = Ø)

Assume that I = Ø i.e. no information is available. In that case, there is no reason

to believe that, given any two pairs of assets (i, j) and (k, l), the dissimilarity between i
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and j is greater or lesser than the dissimilarity between k and l. In such a situation, the

dissimilarity matrix can be specified by (3.7) and since the Gini-Simpson index is equivalent

to Markowitz’s utility function when no information is available, (3.7) is mean-variance

rational. In short, when no information is available the optimal choice of the dissimilarity

matrix is (3.7) and portfolio RQE is mean-variance optimal.

Incomplete Information : case 1 (I = {ρ})

Now assume that I = {ρ} i.e. only the available information is the correlation matrix

(available without estimation errors). In that case, the dissimilarity matrix can be specified

by (3.12) and one can show that portfolio RQE is equivalent to Markowitz’s utility function.

In short, when the only available information is ρ, the optimal dissimilarity matrix is (3.12)

and portfolio RQE is now equivalent to portfolio variance and Markowitz’s utility function.

Moreover, one can also show that it is equivalent to the diversification ratio and portfolio

normalized variance.

Incomplete Information : case 2 (I = {σ, ρ})

Now assume that I = {σ, ρ} i.e. information about the covariance matrix is available (again

without estimation errors). In that case, the dissimilarity matrix can be specified by (3.10).

This specification is not systematically mean-variance rational, unless assets have the same

volatility. The intuition behind this result is given by portfolio RQE diversification criteria

(Definition 5.1). Given that σ represents an individual characteristic of assets, it is no

longer optimal to be “equidissimilar ”from assets held. Rather it is better to be close to

assets with lower volatility and further way from assets with higher volatility. As a result,

holding RQEP when I = {σ, ρ} is mean-variance sub-optimal and can be interpreted as an

example of over diversification. Portfolio RQE must now be coupled with another measure

to achieve better performance. Below, we present three examples to show how this can be

achieved.

Example 1 (portfolio variance). Consider portfolio variance

σ2(w) = w>Σw.

where Σ = (σij)
N
i,j=1 is the covariance matrix. Exploiting the definition of diversification
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return, we can rewrite σ2(w) as follows:

σ2(w) = w>σ2 −HD(w),

where D is specified by (3.10). Accordingly, the portfolio variance is a combination of

portfolio RQE and the weighted average of assets variances. As a result, portfolio RQE

can be combined with a function of asset variances under the information set I = {σ, ρ} to

achieve better performance.

Example 2 (portfolio variance normalized). Consider now portfolio variance normal-

ized

NV (w) =
w>Σw

w>σ2

As we can observe, NV depends only on the elements of the covariance matrix Σ, so it is

defined under the information set SI = {σ, ρ}. It is straightforward to show that NV is

equivalent to
1

NV (w)
− 1 =

w>σ2 − w>Σw

w>Σw
.

Accordingly, NV is a combination of portfolio RQE (with D specified by (3.10)) and port-

folio variance and it can be interpreted as a risk-diversification trade-off where the risk is

measured by portfolio variance and the diversification by portfolio RQE. NV can also be

interpreted as risk-adjusted diversification return. This shows how portfolio RQE can be

combined with portfolio variance under the information set I = {σ, ρ} to achieve better

performance.

Example 3 (diversification ratio). Finally, consider the diversification ratio

DR(w) =
w> σ√
w>Σw

.

As showing in Choueifaty et al. (2013), the optimal portfolios of DR (most diversified portfo-

lio or MDP in short) can be obtained in two steps. The first step consists of the minimization

of the objective function

C(w) =
1

w>ρw
,

and the second step consists to rescale the resultant weights by corresponding asset volatili-

ties. Notice that the first step also consists of the maximization of portfolio RQE (with D
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specified by (3.12)) : Therefore, the MDP is obtained by the combination of portfolio RQE

and asset volatilities. As a result, under the information set I = {σ, ρ}, a more efficient

portfolio can be obtained by rescaling RQEP by asset volatilities.

Remark 5.1. It is important to stress that when portfolio variance cannot be used as portfo-

lio risk (see Markowitz, 2014, for more details), it is not systematically necessary to combine

portfolio RQE with other portfolio performance measures to achieve a better performance.

We plan to investigate this fact further in further research.

Complete Information : I = {µ, σ, ρ}

Now assume that I = {µ, σ, ρ} i.e. we have complete information. In that case, D can

be specified as previously (Equation (3.10)). The specification remains non mean-variance

rational however, unless assets have the same certain equivalent

E(Ri)− c = τ σ2i , (5.8)

where c is a constant and τ is the coefficient of risk aversion. If we assume that a risk-

free asset is available, with return Rn+1, it is straightforward to show that condition (5.8)

remains valid with c = Rn+1:

E(Ri)−Rn+1 = τ σ2i , (5.9)

where τ is equal to the social risk aversion coefficient, and RQEP can be obtained through

the two fund separation theorem.

However, even if the relation (5.9) can be justified theoretically by the results of Merton

(1987) and Malkiel and Xu (2006)8, it cannot hold due to the low volatility anomaly.9

8Malkiel and Xu (2006)’s model is a generalization of Merton (1987). The authors show that when some
investors cannot hold the market portfolio, the remaining investors will also be unable to hold that portfolio.
Therefore, idiosyncratic risk could be priced in part to compensate rational investors for an inability to hold
the market portfolio.

9This anomaly says that portfolios of high volatility stocks underperformed those of low volatility stocks
in term of risk-adjusted returns. For example, Baker et al. (2011) show that regardless of whether the risk
is defined (beta or volatility) or whether all stocks or only large caps are considered, low-risk portfolios
consistently outperformed high-risk portfolios over the period considered (January 1968-December 2008).
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Moreover, one can show that (5.9) is not a non-arbitrage relation.10 Accordingly, it is

unlikely that portfolio RQE turns out to be mean-variance optimal when we have complete

information. This is because it is no longer optimal to be “equidissimilar ”from assets

held. Rather, it is better to be close to assets with high expected return and low volatility.

Therefore, under the information set I = {µ, σ, ρ}, portfolio RQE must be combined with

another performance measure to achieve better performance. Below, we present such an

example.

Example 4 (Markowitz’s utility function). Consider Markowitz’s utility function (as-

suming that the risk free asset is not available)

U(w) = w>µ− τ w>Σw,

U(w) can also be rewritten as

U(w) =
(
w>µ− τw>σ2

)
+ τ

(
w>σ2 − w>Σw

)
(5.10)

where τ is the coefficient of the risk aversion. The first term of (5.10) represents the weighted

average of asset certain-equivalents and the second term is portfolio RQE multiplied by the

coefficient of the risk aversion (see particular case 3.3.2). Thus, Markowitz’s utility function

can be viewed as a combination of asset certain equivalents and portfolio RQE, a nice

example of the use of portfolio RQE under complete information. As a result, portfolio RQE

can be combined with portfolio certain-equivalent under the information set I = {µ, σ, ρ} to

achieve better performance.

Equation (5.10) also gives a new interpretation to the mean-variance model, providing an-

swers to frequently asked questions in this paradigm: “Does a specific portfolio diversi-

fication measure exist in mean-variance model? ”(see Fernholz, 2010) or “How can we

quantify the lack of diversification of the Markowitz portfolios? ”(see Pola, 2014b). From

Equation (5.10), we can conclude, contrary to Fernholz (2010), that a specific measure of

portfolio diversification does exist in the mean-variance model and this measure is portfolio

10Following Lee (2011), consider two assets i and j with identical risk-adjusted return
E(ri)−rN+1

σ2
i

. A new

company, k, can be created by holding shares of i and j on the balance sheet such as the risk-adjusted return
of k is higher than those of i and j unless the correlation between i and j is +1 and i and j have the same
volatility, which means i and j are redundant. Therefore, (5.9) can be violated and an arbitrage opportunity
exits unless all the assets of the universe is redundant.
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RQE. The lack of diversification of Markowitz’s portfolios can therefore be measured using

portfolio RQE. This result reinforces our claim that portfolio RQE can be considered as an

unifying approach for portfolio diversification.

Equation (5.10) also allows to interpret the coefficient of the risk aversion τ as the coefficient

of the diversification aversion. Further, we can measure the diversification return in the

mean-variance model by τ
(
w>σ2 − w>Σw

)
, where the term in parenthesis is diversification

benefit measured by portfolio RQE.

Imperfect Information

In general, the vectors µ, σ, ρ are set at their estimated values using the historical data,

ignoring estimations risk. However, these risks are known to have a huge impact on

Markowitz’s portfolios. More precisely, they are the source of undesirable extreme weights

and the poor out-of-sample performance of Markowitz portfolios (Chopra and Ziemba,

1993). In the RQE paradigm, the matrix D can be specified to take estimation risk into

consideration.

To illustrate, consider the information set I = {ρ}. As discussed above, the optimal choice

of the dissimilarity matrix in this case is (3.12). Assume now that asset correlations are

estimated with errors, so that (3.12) becomes sub-optimal. Denoting the specification (3.7)

and (3.12) D0 and D1 respectively, we argue that the dissimilarity matrix can be specified

as follows:

dθ,ij = (1− θ)d1,ij + θ d0,ij , (5.11)

where parameter θ ∈ [0, 1] takes into account estimation errors. When estimation errors

are equal to zero, θ = 0 and Dθ reduces to D1, which is optimal. When estimation errors

are very high, however θ = 1 and Dθ reduces to D0, which is optimal. This occurs because,

under very high estimation errors the information set I = {ρ} reduces to I = Ø.

In such case dθ,ij can be interpreted as the expected dissimilarity, and the parameter θ

represents the probability that the dissimilarity between assets i and j is equal to d1,ij ,

while 1− θ represents the probability that the dissimilarity between assets i and j is equal

to d0,ij . It can also be interpreted as the shrinking dissimilarity, whereby d1,ij is the guess,

d0,ij is the shrinkage target, and θ is the shrinkage constant. The parameter θ can be
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calibrated following Ledoit and Wolf (2003). Below, we present an example where Dθ is

used to take into account estimation errors.

Example 5 (Bouchaud’s general free utility function). Consider Bouchaud’s general

free utility

Fq(w) = U(w)− ξ Yq(w)− 1

q − 1
,

where U is Markowitz’s utility function, Yq(w) =
∑n

i=1w
q
i is a concentration measure,

−Yq(w)−1
q−1 is Patil and Taille (1982)’s diversity measure and q an integer greater than one.

We consider the case q = 2. In that case, −Yq(w)−1
q−1 coincides with the Gini-Simpson index,

and Equation (5.10) implies that

F2(w) = w>(µ− τσ2) + (τ + ξ)w>Dαw,

where θ = τ
τ+ξ and Dθ = θD2 + (1− θ)D0, with D2 denotes a dissimilarity matrix specified

by (3.10). Therfore, portfolio RQE is at the core of Bouchaud ’s general free utility function

where the diversification risk aversion coefficient is τ + ξ, that is the sum of the standard

risk aversion coefficient and the estimation risk aversion coefficient. As a result, portfolio

RQE can be combined with portfolio certain equivalent under the imperfect information set

I = {µ, σ, ρ} to achieve better performance.

Remark 5.2. The dissimilarity specification (5.11) can also be used when portfolio man-

agers wants to handle future uncertainty. 11In that case, θ = 0 means that past performance

is guarantee of future success, so there is no uncertainty going forward and the optimal dis-

similarity matrix is the estimated D matrix. However, θ = 1 means that past performance

is no guarantee of future success, which means there is total uncertainty about the future.

The optimal choice of the dissimilarity matrix in the latter case is D0, defined above.

5.3 Summary

In the light of these results, two conclusions obtain. First, portfolio RQE is a core around

which many portfolio diversification measures and utility functions are built. This shows

that portfolio RQE is a unifying approach to the measures of portfolio diversification. Sec-

11Even if µ, σ, ρ are estimated without error, since they are based on historical data, they represent past
performances only. However, past performances are no guarantee of future success.
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Table 1: List of Portfolios Considered

Portfolios Abbreviation

RQE portfolio with D = D1 RQEPD1

RQE portfolio with D = D2 RQEPD2

RQE portfolio with D = D0.5 RQEPD0.5

RQE portfolio with D = D0.8 RQEPD0.8

Equally weight portfolio EW
Equally risk contribution portfolio ERCP
Most diversified portfolio MDP
Capitalization weight index CW
Market portfolio Mkt

Notes. This table lists the various portfolios we compare. The MKT portfolio refer to the
capitalization-weight portfolio of all New York Stock Exchange (NYSE), American Stock
Exchange (AMEX), and National Association of Securities Dealers Automated Quotations
(NASDAQ) firms (consult Kenneth R. French website : http://mba.tuck.dartmouth.edu/

pages/faculty/ken.french/Data_Library/f-f_factors.html for more details). The CW is the
capitalization-weight index computed from industries annual size data available in the
Excel file containing our reference universe data. D1 and D2 are dissimilarity matrix
specified respectively by (3.12) and (3.10). D0.5 and D0.8 is the combination of D2 and
D0 with alpha equal respectively to 0.5 and 0.8.

ond, portfolio RQE allows a more transparent interpretation of many diversification mea-

sures and utility functions. For example, the Gini-Simpson index diversification protects

from ignorance about assets future returns, assets expected returns and assets covariance

matrix. Portfolio RQE (Equation (3.7)) protects from ignorance about assets future re-

turns, assets expected returns and assets volatility. Diversification ratio and portfolio nor-

malized variance protects from ignorance about assets future returns and assets expected

returns. Markowitz’s utility function protects from ignorance about assets future returns.

Bouchaud’s utility function protects from ignorance about assets future returns and esti-

mation risk. Diversification return or excess growth rate can be view as a protection from

ignorance about assets certain equivalent.

6 Portfolio RQE and Mass Destruction Protection : Illustration

This section provides an empirical illustration of the capacity of RQEP to protect from

mass destruction as discussed in Section 3 and 5. We compare, both in-sample and out-of-

sample, four RQEP with the most popular existing diversified portfolios using two measures

of portfolio performance: its return during bear market periods and its market beta. To

conduct the in-sample comparisons, we use the Fama-French forty-nine industry portfolios

dataset of equal weighted annual asset average returns with forty-four years observed period

from 1970 to 2013 as reference universe. For the out-of-sample comparisons, we use the

Fama-French forty-nine industry portfolios data set of equal weighted daily asset average

29

http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/Data_Library/f-f_factors.html
http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/Data_Library/f-f_factors.html


Table 2: Portfolio Expected Average returns Comparison During Bear Market Periods
(BMP) In-Sample

BMP RQEP MDP ERCP EWP CW MKT MVP

D1 D2 D0.5 D0.8

1973 0.030 0.144 0.041 -0.138 -0.058 -0.296 -0.325 -0.300 -0.193 -0.161
1974 -0.054 -0.066 -0.131 -0.182 -0.071 -0.194 -0.216 -0.230 -0.277 -0.127
1977 0.166 0.149 0.175 0.206 0.167 0.215 0.228 0.223 -0.031 0.127
1981 -0.028 -0.179 -0.129 -0.060 0.039 0.030 0.019 -0.024 -0.034 0.121
1987 0.115 0.157 0.128 0.029 0.069 -0.061 -0.070 -0.061 0.016 -0.037
1990 -0.173 -0.210 -0.190 -0.193 -0.149 -0.195 -0.207 -0.182 -0.061 -0.062
2000 0.440 0.239 0.191 0.105 0.478 0.081 0.014 -0.082 -0.115 0.423
2001 0.296 0.282 0.199 0.236 0.302 0.245 0.243 0.208 -0.113 0.156
2002 0.280 0.391 0.212 0.079 0.161 -0.042 -0.056 -0.134 -0.211 -0.064
2008 -0.345 -0.439 -0.456 -0.459 -0.296 -0.420 -0.452 -0.438 -0.367 -0.210
2011 -0.078 -0.160 -0.153 -0.127 -0.033 -0.083 -0.102 -0.070 0.005 0.118
Average 0.059 0.027 -0.010 -0.045 0.055 -0.065 -0.084 -0.099 -0.125 0.025

Notes. This table compares the expected average returns of considered portfolios in-sample during bear market periods. We consider
as reference universe the Fama-French forty-nine industry portfolios data set of equal weighted annual asset average returns with
forty-four years observed periods from 1970 to 2013. This reference universe gives a complete representation of the U.S. stock market.

returns with observed period from 07-01-1969 to 12-31-2013 as the reference universe.

We identify the bear market periods as period during which the Standard & Poor’s index

(S & P 500) fell at least 20%. We estimate the covariance matrix for RQEP, MVP, MDP

and ERC using Ledoit and Wolf (2003)’s shrinkage estimator, where the shrinkage target

is obtained from a one-factor model and the factor is equal to the cross-sectional average

of all the random variables (assets return). 12

6.1 In-Sample Comparison

We begin by computing portfolios returns. Given a portfolio w (with the exception of the

MKT), we compute the in-sample returns vector as R(w) = Rw>, where R is T ×N assets

(industries) returns matrix, with T = 43 the number of periods and N = 49 the number of

industries. The in-sample return of a portfolio w at the bear market periods t is then given

by Rt(w) = Rtw
>. Specially, in the case of the CW, the in-sample returns vector is given

by Rt(w) = Rtw
>
t , where wt is the CW index at period t. MKT returns are taken from

Kenneth R. French’s website. The in-sample portfolio returns in all identified bear market

periods are reported in Table 2. Since a portfolio w is not rebalanced, we only interpret

the average of portfolio return during all identified bear market periods. As we can see,

12We do this using the code available at https://r-forge.r-project.org/scm/viewvc.php/pkg/

ExpectedReturns/man/?root=expectedreturns&pathrev=2.
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Table 3: Fama-French Yearly Regression Coefficient, 1970-2013 In-Sample

Portfolios MKT SMB HML ALPHA R2

RQEPD1
0.603∗∗∗ 0.750∗∗∗ 0.322 0.057∗ 46.91%

RQEPD2
0.604∗∗∗ 1.232∗∗∗ -0.180 0.074 44.3%

RQEPD0.5
0.760∗∗∗ 1.177∗∗∗ -0.112 0.062∗∗∗ 57.63%

RQEPD0.8 0.891∗∗∗ 1.169∗∗∗ 0.052 0.035 77.30%
EWP 1.016∗∗∗ 1.134∗∗∗ 0.224∗∗ 0.004 90.40%
CW 1.065∗∗∗ 1.159∗∗∗ -0.033 0.028∗∗ 92.70%
MDP 0.657∗∗∗ 0.630∗∗∗ 0.422∗∗∗ 0.050∗∗ 57.94%
ERCP 0.963∗∗∗ 1.018∗∗∗ 0.286∗∗∗ 0.006 90.06%
MVP 0.703∗∗∗ 0.229∗∗ 0.532∗∗∗ 0.019 76.33%

Notes. This table reports the results of Fama-French 3-factor model regressions
for each considered portfolio in-sample. The principal goal is to rank the portfolios
according to their market risk (coefficient of the factor MKT). The factor SMB (Small
Minus Big) measures portfolio size premium and the factor HML (High Minus Low)
measures portfolio value premium.
Significance levels: ∗ ∗ ∗ = 1%; ∗∗ = 5%; ∗ = 10%.

RQEPD1 , RQEPD2 and the MDP provide the best protection. The result of the MDP is

without surprise, since the MDP holds the same assets with RQEPD1 (the two portfolios

are exposed to the same risk factors). Therefore, we can conclude that RQEP is a cautious

portfolio offering better protection from mass destruction.

Next, we obtain the market beta of a portfolio w by running Fama-French 3- factors regres-

sions using its expected returns vector, R(w). The objective is to rank portfolios according

to their market beta. The results of these regressions are reported in Table 3. As we can

see, RQEPD1 and RQEPD2 have the lowest market exposure, followed by the MDP and the

MVP. Even if RQEPD0.5 and RQEPD0.8 are more beta-risky than the MDP and the MVP,

they still have less beta-risk than the EWP, the CW and the MKT. As a result, RQEP is

in general less beta-risky and is a cautious portfolio offering better protection from mass

destruction.

We can also see that all RQEP have positive SMB factor exposure, so they are less biased

toward large capitalizations stocks. Unsurprisingly, the MVP, the MDP and the ERCP have

positive and significant HML factor exposure, in opposite to RQEP. This shows that RQEPs

are not low volatility strategies. RQEP except RQEPD0.8 and the MDP are the portfolios

which exhibit lowest R2, showing thus that much of their performances are not explained

by the market capitalization index and the other two factors. This result also suggests that

RQEP is more risk-factor diversified than the other portfolios considered. This comes as

no surprise, since it maximizes the effective number of independent risk factors.
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Table 4: Portfolio Expected Average returns Comparison During Bear Market Periods
(BMP) Out-Of-Sample

BMP RQEP MDP ERCP EWP CW MKT MVP

D1 D2 D0.5 D0.8

1973 -0.090 -0.276 -0.261 -0.313 -0.074 -0.297 -0.323 -0.298 -0.193 -0.154
1974 -0.089 -0.197 -0.167 -0.179 -0.071 -0.160 -0.172 -0.194 -0.277 -0.158
1977 0.273 0.281 0.288 0.271 0.273 0.253 0.256 0.237 -0.031 0.165
1981 -0.095 -0.243 -0.165 -0.080 0.043 0.058 0.021 -0.032 -0.034 0.170
1987 0.186 0.381 0.232 0.097 0.140 0.026 0.014 0.019 0.016 0.052
1990 -0.103 -0.174 -0.120 -0.091 -0.092 -0.079 -0.076 -0.068 -0.061 -0.025
2000 0.304 0.636 0.351 0.212 0.258 0.150 0.139 -0.011 -0.115 0.180
2001 0.478 0.763 0.690 0.500 0.374 0.387 0.413 0.366 -0.113 0.323
2002 0.239 0.391 0.276 0.158 0.145 0.087 0.045 -0.038 -0.211 0.208
2008 -0.228 -0.261 -0.289 -0.344 -0.224 -0.361 -0.375 -0.353 -0.367 -0.287
2011 -0.029 -0.178 -0.134 -0.116 -0.011 -0.067 -0.083 -0.041 0.005 0.002
Average 0.076 0.101 0.063 0.010 0.069 -0.0002 -0.012 -0.037 -0.125 0.043

Notes. This table compares the expected average returns of considered portfolios out-of-sample during bear market periods. We
consider as reference universe the Fama-French forty-nine industry portfolios data set of equal weighted daily asset average returns
with observed periods from 01-07-1969 to 31-12-2013. This reference universe gives a complete representation of the U.S. stock
market.

6.2 Out-of-Sample Comparison

We use a one year rolling-window of daily returns to generate out-of-sample portfolio re-

turns. We compute portfolios annual returns from daily returns. The results are reported

in Table 4. As we can observe, RQEPD1 and RQEPD2 give best protection during the

bear market periods 1973, 1977, 1987, 2000, 2001 and 2002. The poor protection offered

by RQEPD0.5 and RQEPD0.8 comes from the fact that the matrix Dα, α = 0.5, 0.8 is the

average of the matrix D2 and D0 and its performance is affected by that of EWP. The

MVP offers the best protection during the bear market periods 1981 and 1990, while the

MDP dominates during the bear market periods 1973, 1974 and 2008. The MKT offers the

best protection during the bear market periods 2011. On average however RQEPD1 and

RQEPD2 still offer the better protection.

Next, we obtain the market risk of a portfolio w by running Fama-French 3 factors model re-

gressions using its expected returns vector, R(w). The results of the regression are reported

in Table 5. We find same results as previously.
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Table 5: Fama-French Yearly Regression Coefficient, 1970-2013 Out-Of-Sample

Portfolios MKT SMB HML ALPHA R2

RQEPD1
0.763∗∗∗ 1.130∗∗∗ 0.165 0.123∗∗∗ 55.74%

RQEPD2
0.656∗∗ 1.387∗∗∗ -0.070 0.121∗∗ 39.59%

RQEPD0.5
0.777∗∗∗ 1.307∗∗∗ 0.007 0.113∗∗∗ 53.07%

RQEPD0.8 0.972∗∗∗ 1.183∗∗∗ 0.133 0.094∗∗∗ 70.48%
EWP 1.102∗∗∗ 1.094∗∗∗ 0.277∗ 0.083∗∗∗ 79.48%
CW 1.140∗∗∗ 1.082∗∗∗ 0.006 0.095∗∗∗ 82.76%
MDP 0.795∗∗∗ 1.000∗∗∗ 0.306 0.115∗∗∗ 63.46%
ERCP 1.075∗∗∗ 1.038∗∗∗ 0.353∗∗ 0.084∗∗∗ 79.85%
MVP 0.865∗∗∗ 0.354∗∗∗ 0.610∗∗∗ 0.050∗∗∗ 76.64%

Notes. This table reports the results of Fama-French 3-factor model regressions for
each considered portfolio out-of-sample. We find same results as previously.
Significance levels: ∗ ∗ ∗ = 1%; ∗∗ = 5%; ∗ = 10%.

In short, RQEP offers a strategy which better protects from mass destruction than the most

quoted diversified portfolios, in particular when the dissimilarity matrix is specified by D1

or D2. This result is valid both in-sample and out-of-sample, and suggests that RQEP is

more risk-factor diversified than the most quoted diversified portfolios.

7 Conclusion

This paper has introduced a new portfolio diversification measure, portfolio Rao (1982b)’s

Quadratic Entropy (RQE). We have first shown that portfolio RQE verifies many proper-

ties deemed desirable for a measure of portfolio diversification. Second, we have shown that

portfolio RQE is a unifying approach that represents the core around which many existing

portfolio diversification measures and utility functions are built, among them the diversifi-

cation ratio (DR), the portfolio variance normalized (NV), the diversification return (Dr)

or the excess growth rate, the Gini-Simpson index (GS), the return gap (RG), Markowitz’s

utility function and Bouchaud’s general free utility. Third, we have shown that portfolio

RQE is a flexible but formal approach for fund managers to develop new diversified portfo-

lios taking into account various asset characteristics. Fourth, we have provided theoretical

evidence that holding a RQE optimal portfolio (RQEP) provides protection from mass de-

struction and shown that this protection is substantially by comparing four RQEP with the

most popular existing diversified portfolios, both in-sample and out-of-sample.

The paper has also established the conditions under which RQEP is mean-variance optimal.

We have proved that RQEP is mean-variance optimal in two cases. The first case is when

no information is available, and portfolio RQE is equivalent to the Gini-Simpson index,
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accordingly to Markowitz’s utility function. The second case is when the only available

information is the correlation matrix. In that case, portfolio RQE is equivalent to portfo-

lio variance, accordingly to Markowitz’s utility function. Therefore, in the mean-variance

paradigm, holding RQEP protects against ignorance about assets individual characteristics

which are asset expected returns and volatility, and asset future returns.

When information on assets individual characteristics are known, RQEP is no longer mean-

variance optimal. It is better to be close to assets with desirable individual characteris-

tics, and holding RQEP, in that case creates over-diversification. A better performance

can be achieved combining portfolio RQE and other portfolio performance measures. We

have shown that portfolio variance, normalized portfolio variance, diversification ratio,

Markowitz’s utility function and Bouchaud’s general free utility function are an exam-

ple of the use of portfolio RQE in that case. As a result, the interpretation of the above

diversification measures and utility functions become more transparent with portfolio RQE.

In extending Rao’s Quadratic Entropy to portfolio selection, our objective was to develop a

framework to measure unambiguously the extent of a portfolio’s diversification. We argue

that a portfolio RQE should be considered a strong candidate for being an “ideal ”portfolio

diversification measure. The adoption of RQEP by investors, and their trustees should help

them navigate the uncertain world of portfolio selection.

This is a first study. Further research will include : (i) a deeper investigation of the choice

of the dissimilarity matrix D; (ii) a deeper comparison of RQE portfolios with the most

popular existing diversified portfolios and (iii) the comparison of mean-RQE and mean-

variance models.
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A Proofs of Propositions

A.1 Proof of Proposition 3.1

Consider the first order conditions of problem (3.6) (Propositions 4.1 and 4.3). Since we

consider only assets held by RQEP, 4.1 becomes

N
wRQE∑
j=1

dijw
RQE
j = η, ∀ i = 1, ..., NwRQE . (A-1)

Summing (A-1) over i gives

N
wRQE∑
j=1

wRQEj DCj
(
wRQE

)
= η NwRQE , ∀ i = 1, ..., NwRQE . (A-2)

Equation (A-2) completes the proof of both the first and the second points, since η =

2HD

(
wRQE

)
.

A.2 Proof of Proposition 4.1

Let w be a portfolio and wi be the ith single asset portfolio (wii = 1 and wij = 0, i 6= j).

First, since wi ≥ 0, ∀i = 1, ..., N and dij ≥ 0, ∀i, j = 1, ..., N , HD(w) ≥ 0. Second,

HD(wi) = dii = 0. Therefore,

HD(w) ≥ HD(wi), ∀i = 1, ..., N.

A.3 Proof of Proposition 4.2

Consider a universe of assets U = {Ai}Ni=1 such as Ai = A, ∀ i = 1, ..., N and w a portfolio.

Since Ai = A, ∀ i = 1, ..., N , assets are perfectly similar. This implies that dij = 0, ∀ i, j =

1, ..., N . Then

HD(w) = 0.
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A.4 Proof of Proposition 4.3

Let U = {Ai}Ni=1 a universe of N assets. Consider a new universe U = U ∪ {B} such as

the asset B is duplicated i.e. there is an asset k ∈ {1, ..., N} such as B = Ak. We denote

by wRQE and wRQE the weights of RQEP associated to U and U respectively, and by HD

and HD portfolio RQE associated to U and U , respectively. HD and HD are defined as

follows

HD(w) =

N∑
i,j=1

d(Ai, Aj)wAiwAj , (A-3)

and

HD(w) =

N∑
i,j 6=k

d(Ai, Aj)wAiwAj +

N∑
i=1

d(Ak, Ai)wAkwAi +

N∑
i=1

d(B,Ai)wBwAi . (A-4)

wRQE and wRQE are defined as follows

wRQE ∈ arg Max
w∈W

HD(w), (A-5)

and

wRQE ∈ arg Max
w∈W

HD(w). (A-6)

Since B = Ak, d(Ak, Ai) = d(B,Ai), ∀ i = 1, ..., N . Then, (A-6) can be rewritten as follows

wRQE ∈ arg Max
w∈W

n∑
i,j 6=k

d(Ai, Aj)wAiwAj +
N∑
i=1

d(Ak, Ai)wAi(wAk + wB). (A-7)

Let w∗1 = (wRQEA1
, ..., wRQEAk−1

, w∗1,Ak , w
RQE
Ak+1

, ..., wRQEAN
, w∗1,B) and w∗2 = (wRQE

A1
, ...,wRQE

Ak−1
,wRQE

Ak
+

wRQE
B ,wRQE

Ak+1
, ...,wRQE

AN
) such as w∗1,Ak +w∗1,B = wRQEAk

. It is straightforward to show that

HD

(
wRQE

)
= HD(w∗1) = HD(w∗2) = HD

(
wRQE

)
. (A-8)

Equation (A-8) shows that portfolio RQE and RQEP are both duplicate invariant.

A.5 Proof of Proposition 4.4

Let U a universe of N assets and U a universe of N + 1 assets, derived from U increasing

the size of U from N to N + 1. Denote wRQE RQEP weights of U and wRQE that of U .
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Consider a portfolio w =
(
wRQE , 0

)
. Portfolio w is an element of W of U , so

HD

(
wRQE

)
≥ HD (w) .

Since HD (w) = HD

(
wRQE

)
,

HD

(
wRQE

)
≥ HD

(
wRQE

)
.

A.6 Proof of Proposition 5.2

First, we prove that RQEP respects the Core Property (2). Consider a compact form of

(5.1)

DwRQE = η1− ν. (A-9)

Multiplying (A-9) by
(
wRQE

)>
gives

η =
(
wRQE

)>
DwRQE = 2HD

(
wRQE

)
. (A-10)

Substituting η in (A-9) and multiplying on the left the resulting equation by w> lead to

w>DwRQE = 2HD

(
wRQE

)
− w>ν. (A-11)

Subtracting HD

(
wRQE

)
and HD(w) both from the left and right term of (A-11) lead to

2HD

(
wRQE , w

)
−HD

(
wRQE

)
−HD(w) = HD

(
wRQE

)
−HD(w)− w>ν. (A-12)

The result follows since ν ≥ 0.

We now prove that a portfolio w∗ that respects the Core Property (2) necessarily maximizes

portfolio RQE. Assume that w∗ respects Core Property (2). In that case,

DHD (w∗, w) ≤ HD (w∗)−HD(w). (A-13)

Since DHD (w∗, w) is a dissimilarity, we have DHD (w∗, w) ≥ 0. Then HD (w∗)−HD(w) ≥ 0.

The results follows.
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A.7 Proof of Proposition 5.1

First, we prove that RQEP respects the Core Property (1) i.e. Equations (5.4) and (5.5) of

Proposition 5.1. Recall that

DHD

(
wRQE , w

)
= HD

(
wRQE

)
−H(w)− w>ν. (A-14)

Assume that w is a ith single asset portfolio. Then (A-14) becomes

DHD

(
wRQE , wi

)
= HD

(
wRQE

)
− νi (A-15)

where wi is a ith single asset portfolio i.e. wii = 1. If asset i is held in RQEP, (A-15) coincides

with (5.4) of Proposition 5.1. Otherwise, (A-15) coincides with (5.5) of Proposition 5.1.

Therefore RQEP respects the Core Property (1).

Now we prove that any portfolio that respects the Core Property (1) necessary maximizes

portfolio RQE. Assume that w∗ respect the Core Property (1). Then,

DHD

(
w∗, wi

)
≤ HD (w∗) , ∀ i = 1, ..., N. (A-16)

Equation (A-16) can be rewritten as

2

N∑
j=1

dijw
∗
j −HD(w∗) ≤ HD (w∗) . (A-17)

Multiplying (A-17) by wi and summing over i gives

2HD(w,w∗)−HD(w∗) ≤ HD (w∗) . (A-18)

By subtracting HD(w) both to right hand side and left hand side, we have

DHD (w,w∗) ≤ HD(w∗)−HD(w). (A-19)

Then w∗ respect the Core Property (2). Therefore, w∗ maximizes portfolio RQE.
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