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Résumé / Abstract 
 

 
Nous débutons ce rapport en développant un exemple simplifié qui illustre l’importance 

de valoriser l’option de retarder un investissement. Une courte description des différentes 
options susceptibles d’être incorporées dans un projet d’investissement est ensuite donnée. Pour 
illustrer l’importance d’adopter un cadre d’analyse basé sur la méthodologie des options réelles 
pour la planification stratégique et l’analyse concurrentielle, nous présentons trois applications 
possibles d’options réelles dans l’évaluation d’investissements chez Bell Canada. La nécessité 
de l’adoption d’un tel cadre d’analyse dans le contexte de la réglementation des 
télécommunications fait ensuite l’objet d’une brève discussion. Nous terminons en soulignant 
que le succès de la mise en pratique d’un cadre «options réelles» dépend essentiellement d’un 
système efficace de collecte et de traitement de l’information. Deux appendices techniques 
fournissent plus de détails sur les techniques de modélisation et de solution qui sont 
couramment utilisées pour des problèmes d’options réelles. 
 

Mots clés : Options réelles, valeur d’option, volatilité, risque, irréversibilité, 
télécommunications. 

 
 

In this report, we first develop a simplified example that illustrates the importance of 
considering the option ``waiting to invest'' when valuing an investment. This is followed by a 
short description of other options that could be embedded in an investment opportunity. In 
order to stress the importance of the real option mind-set in strategic planning and competitive 
assessment, we present three examples of possible applications of real options for evaluating 
investments at Bell Canada. A brief discussion follows on the importance of a real options 
mind-set in the telecommunications regulation context. Finally we conclude by underlining the 
importance of an efficient information gathering and processing framework to implement a real 
options framework. Two technical appendices provide more details on both the modeling and 
the solving techniques that are commonly used to implement real options. 
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1 Introduction

An investment opportunity typically includes a certain number of options

that can be exercised over time as new information is continuously gathered

and as exogenous uncertainty evolves or is resolved. Furthermore, resources

that are committed to a project often cannot be recuperated, that is, an

investment is usually or at least in good part irreversible. In such a case, a

decision criteria that minimizes the probability of landing in an unfavorable

state is warranted. This is the essence of the real options approach to capital

budgeting.

The real options method extends the standard net present value method

(NPV) by recognizing that high level managers have the flexibility to inter-

vene at certain points in the future as new information becomes available and

as uncertainty evolves. It is also an uncertainty and risk management tool

that efficiently uses available information to diminish (without necessarily

eliminating) the risk of loosing valuable resources.

Among the different options that are available to a decision maker, we

find: the options of delaying an investment, the operating flexibility options,

the time to build options, the options to switch and the options to abandon

an ongoing investment. In real life situations, several of those real options

can be embedded in a given project. With the arrival of new information, a

decision maker has in many cases the flexibility to modify in some way an

investment project.

Rather than considering an average scenario or a decision tree that ex-

amines only a subset of flexibility points as in “advanced” net present value
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(NPV) analysis, a real options approach explicitly values flexibility. Hence,

it adds to the fundamental financial and economic value of the project the

real value of managerial discretionary interventions. Rules of thumb such as

augmenting the discount rate for a project that is perceived to be riskier or to

generate payoffs that are far into the future also fail to fulfill the requirements

set out and met by a rigorous real options formulation.

The effect of managerial flexibility on value is non-linear, a feature that

NPV, advanced or not, fails to recognize in a proper way. If at some point

in time the project fundamentals move on a bad or unfavorable path, a high

level project manager may be able to intervene and decide to abandon the

project. Hence, the future negative value of the project if and when such a

point is reached will never materialize. However, the time at which such a

point may be reached is itself random. Hence, simple standard discounting

methods cannot be applied.

In the real options approach, a project is valued as a set of optimally exer-

cised options over time. The evaluation is truly dynamic. At some points or

times in the future, the decision maker can and will intervene. For instance,

he may be able to delay or advance the realization of and investment project.

In doing so, he must weigh the benefits of waiting for new information against

the foregone profits due to investment delay. Evaluating the project is evalu-

ating the optimal strategy of intervention, that is, the optimal decision rule

that yields the highest expected net present value. Rather than evaluating

a project by projecting uncertain cash flows and discounting their expected

value to obtain the net present value, the real options approach considers

each investment in the different phases of a project as the striking or exercise

price of an option to proceed to the next phase. The impact on investment

2



evaluation could be very significant.

The impact of valuing an investment by a real options approach is that

some projects which were considered to be unprofitable (negative NPV) may

turn out to be profitable when flexibility is explicitly valued. Consequently,

real options rigorously forces the organization not to discard projects that

have future value creation potential, but that are currently unprofitable ac-

cording to standard criteria. Similarly, in the context of mutually exclusive

investments, a less profitable opportunity may be chosen if the valuation

method fails to recognize flexibility, thereby destroying potential value for

the firm.

It is therefore important for high level executives to understand the main

methodological elements and steps of sound real options analysis in order to

embrace its potential as a mind-set for strategic decision making.

In the next section, we develop a simplified example that illustrates the

importance of considering the option “waiting to invest” when valuing an in-

vestment. This is followed by a short description of other options that could

be embedded in an investment opportunity. The following section stresses

the use of the real option mind-set in strategic planning and competitive

assessment. We then present three examples of possible applications of real

options for evaluating investments at Bell Canada. A brief discussion fol-

lows on the importance of a real options mind-set in the telecommunications

regulation context. Finally we conclude by underlining the importance of

an efficient information gathering and processing framework to implement a

real options framework. Two technical appendices provide more details on

the modelling and solving techniques that are commonly used to implement

real options.
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2 Real Options and the Shortfalls of the
Traditional Capital Budgeting Methods

2.1 Shortfalls of the Standard Net Present Value

Traditionally, managers have used the standard net present value (NPV)

method to make capital budgeting decisions. The analysis below can also be

applied to the internal rate of return (IRR) method or to other “advanced”

NPV or IRR methods. In this section, we will argue that for several types of

investment opportunities the NPV method is incomplete because it fails to

properly value managerial flexibility as well as the other embedded invest-

ment opportunities in a world where uncertainty and information evolve over

time. Different assumptions, implicit in the standard NPV method, render

the method incompatible with several real life situations.

To be operational, the standard NPV requires three inputs, these are:

1. the present value of the project costs I,

2. the project’s sequence of expected cash flows {Ct}Nt=n, and

3. the risk adjusted discount rate ρ.

To justify an investment, the standard NPV requires that the difference

between the expected discounted value of the project’s cash flows (DCF) and

the expected discounted value of the cost (I) of the project be superior or

equal to zero. The standard NPV criterion can then be written as

decision =

 Invest if DCF − I ≥ 0

Do not invest if DCF − I < 0
. (1)
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Under the spell of uncertainty, the above decision rule is adequate only under

specific circumstances. We start by considering a simple project that cannot

be altered once it is operational and where no other profit opportunities

arise from realizing the original investment. In this case, (1) is a satisfactory

criterion if one or both of the following criteria is satisfied:

1. the manager can later reverse his decision and recuperate I at a negli-

gible cost;

2. the investment is a now or never opportunity.

If I can be recuperated when market conditions turn out to be unfavor-

able, we say that the investment is perfectly reversible. It is not difficult

to imagine situations in which this first condition is violated. For example,

consider an investment in an optical fiber network. It is hard to imagine that

the network can be closed and dismantled without loosing a substantial part

of the original investment. If the manager has the option to delay, we must

not ignore the possibility of realizing the project at a subsequent date. At

this point, a simple example of an irreversible investment that violates the

now or never condition will illustrate the above principles.

Consider a firm that has the opportunity to realize an irreversible invest-

ment today (year t = 0) or in the future (at year t ≥ 1) at a constant cost of
1, 600M$. Suppose that the investment allows the firm to produce a million

units of a certain good forever beginning in the year after the investment is

undertaken, and that the hurdle rate of return required from that investment

is 10% (discount rate). Furthermore, to simplify the example, suppose that

there are no production costs and that the price of a unit evolves according
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to the following diagram:1

Figure 1. Evolution of prices

According to figure 1, we have the following information at time 0:

1. the uncertainty surrounding the price of the firm’s output is totally

resolved in year 3 (t = 3);

2. the price of the output today (year 0) is known to be equal to 166$;

3. the price of the output during year 1 and year 2 will increase will

increase by 50% with probability 1/2 and decrease by 50% with prob-

ability 1/2.
1The price at each node is also equal to the expected value of the future prices.
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For example, if the price of a unit is 249$ in year 1, there is a probability

of 1/2 that it will rise to 373.50$ and a probability of 1/2 that it will fall to

124.50$ in year 2.2 The same pattern is observed at the other nodes until

the market stabilizes in year 3 at one of three possible price levels.3

In periods 0, 1 and 2, the firm can either invest or postpone the decision

to invest or not till the following year. If the manager ignores the fact that

the investment is irreversible and that it is possible to wait till the following

year, he will invest immediately because (Note that at time 0, the expected

cash flow is 166$ in all periods.)

NPV = −1600M$ +
∞X
t=1

166M$

(1.1)t
= 60M$ > 0 ⇒ invest.

If the manager considers the option to wait before investing, he will use the

decision criterion:

decision at t = max {invest at t, wait till t+ 1} (2)

Choosing the period to invest is equivalent to comparing a series of mutually

exclusive projects where each project represents the investment realized at a

different period. But it is imperative to consider in doing so that information

is changing as time goes by.

We will now compare the value at t = 0 of the dynamic and static strate-

gies, the latter being given by . To solve this problem, the technique of
2Consequently, the expected value of the price in t = 2, conditional on the fact that it

has reached 249 in year 1, is also equal to 249$ (0.5 · 373.50$ + 0.5 · 124.50$ = 249$).
3At time 0, the probability that the price will stabilize at 373.50$ is 1/4, at 124.50$

is 1/2, and at 41.50$ is 1/4. If in year 1, the price happens to be 83$, then the probable
prices in year 3 will be revised, conditional on the fact that the price is 83$ in year 1; the
revised probability that the price will stabilize at 373.50$ is 0, at 124.50$ is 1/2, and at
41.50$ is 1/2.
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dynamic optimization will be used and we shall proceed recursively starting

at t = 2. The following notation will be used:

NPVt ≡ expected net present value at t if the firm invests at t,

Bt ≡ expected present value at t if the firm postpones the decision

to invest or not to the next period.

According to figure 1, the market is stable after t = 2 and the project

then becomes a now or never proposition. Postponing the investment in this

case has no other effect than diminishing the present value of the project and

the decision will be

if P2 = 373.50$, then

NPV2 = −1, 600M$ +
∞X
i=3

373.50M$

(1.1)i−2
= 2, 135M$ > 0 ⇒ invest

if P2 = 124.50$ or 41.50$, then NPV2 < 0 ⇒ do not invest.

At t = 1, the firm can either invest immediately or wait until t = 2. The

problem is easily solved at P1 = 83$ where the NPV of the investment is

negative in all future contingencies. The investment is worthless in that

situation. At P1 = 249$ we must compare both strategies. By investing

immediately the expected NPV is

NPV1 = −1, 600M$ +
∞X
i=2

249M$

(1.1)i−1
= 890M$.

If the manager waits, the expected present value of this strategy is

B1 =

"
0.5

Ã
max

(
0, −1, 600M$ +

∞X
i=3

373.50M$

(1.1)i−2

)!

+0.5

Ã
max

(
0, −1, 600M$ +

∞X
i=3

124.50M$

(1.1)i−2

)!#
· 1

(1.1)

= 970.45M$.
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Because B1 −NPV1 > 0 it is optimal to postpone the investment and wait
for a favorable realization at t = 2. By waiting the firm can avoid realizing

at t = 1 an investment which will have a negative value, ex post, if P2 turns

out to fall to 124.50$ at t = 2.

Let us now consider the optimal decision at t = 0. By investing immedi-

ately the expected NPV is

NPV0 = −1, 600M$ +
∞X
i=1

166M$

(1.1)i
= 60M$.

If the manager waits, the value of waiting is

B0 = [0.5max {NPV1 if P1 = 249$, B1 if P1 = 249$}
+0.5max {NPV1 if P1 = 83$, B1 if P1 = 83$}] · 1

(1.1)

=
0.5 · 970.45M$ + 0.5 · 0M$

1.1
= 441.11M$.

At t = 0, because B0 −NPV0 > 0, it is thus optimal to wait till next period
before a decision is made. If at t = 1, the price falls to 83$, the investment

project should be abandoned. If on the other hand the price increases to

249$, then it will be optimal to wait till t = 2 because in such a state (price

level), postponing the investment by one more period, up to t = 2, gives the

largest net present value.

The difference B0−NPV0 is the value of the option to wait. The passage
of time increases the information available to the decision maker. The possi-

bility of avoiding an unfavorable situation affects the value of an investment.

Consequently, investing immediately has an opportunity cost that is equal to

the value of the extra information provided by the passage of time. Delaying

an investment also reduces the present value of the necessary cash outlay.
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The cost associated to waiting is the revenues lost during the waiting period.

The goal of the dynamic approach to investment is to balance these bene-

fits and costs to obtain an optimal investment strategy conditional on the

information available. This optimal strategy gives the best course of action

(invest or wait) in all future states.

Equivalently, by adding the value of the option to invest at a later date

to the direct cost of the investment, we can define an “improved NPV” that

considers the opportunity cost of investing immediately. Here NPV0 can be

decomposed into

NPV0 = DCF0 − I, (3)

it is optimal to invest right away if we have

NPV0 −B0 > 0. (4)

By combining (3) and (4) we get the optimal rule: invest now if and only if

DCF0 − I −B0 > 0. (5)

According to (5), for investing today to be the optimal decision, the dis-

counted expected cash flows from investing today must exceed the sum of

the cost of the investment (I) and the value of the optimally managed option

to invest at a later date. By making the investment today, one renounces to

the option of making the investment at a later date once more information

has been gathered. This renouncement has a cost, namely the value of the

option that is exercised.

The above example is fairly simple, but it is sufficient to show that the

standard NPV criteria may lead to decisions that are suboptimal when there

is uncertainty in the variables governing the value of a project, new informa-

tion will become available, and the investment is in good part irreversible.
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Value may be lost if the decision criterion does not properly take into account

the dynamic structure of the problem. Options are usually embedded in an

investment opportunity and valuation procedures must be able to take into

account the value that stems from active management in exercising those

option. The expansion of the information set through time may create an

incentive to wait for new information before investing in order to reduce the

exposure to downside risk.

Other capital budgeting methods attempt to deal with uncertainty and

flexibility in the decision making process. Although these methods are a

step in the right direction, they are often incomplete. We have in mind here

sensitivity analysis and decision-tree analysis. Sensitivity analysis attempts

to asses the impact of uncertainty on the NPV of an investment but it does

not consider flexibility in the decision making process. For its part, decision-

tree analysis can include flexibility but it quickly becomes intractable when

the number of possible states of the project’s economic environment increases

along with the flexibility points.

The possibility of waiting to invest is one of the many options available

to the decision maker that are not accounted for with the standard NPV

criterion. The following section is a description of the most common real

options typically present in investment projects.

2.2 Common Real Options

As mentioned in the previous section, flexibility has a value that is not cap-

tured by standard NPV analysis. The possibility of postponing a decision

and wait for new information can significantly alter the value of a firm if an
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unfavorable situation can be avoided. With an example we showed that the

standard NPV rule must be adjusted to account for the fact that by investing

now we renounce to (exercise) the option of waiting for new information.

Waiting to invest is not the only way to manage uncertainty and profit

from extra information. Flexibility is sometimes found in subsequent steps

of the decision process. This section describes other situations in which real

options analysis can be useful.

2.2.1 Operating Flexibility Options

The presence of operating costs confers an option when production can be

temporarily suspended at a negligible cost. A value maximizing manager will

only produce when the price P is superior to operating (variable) costs C.

The present value of each instant’s production decision is then equivalent to

a real call option with a payoff equal to

max [P − C, 0] .

At each instant, the firm has the option to expense C (strike price) in ex-

change of P (value of the underlying). The expected present value of a

project’s cash flows is equal to the sum of each instant’s operating options.

In this case, both P and C may be stochastic. The standard NPV criteria

implicitly assumes that production goes on uninterrupted.

2.2.2 Time to Build Options

Certain projects necessitate a series of cash outlays before they generate any

cash flows. Building usually takes time and it is possible to delay or abandon
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the project before it is completed. This class of investment opportunities

includes research and development (R&D) ventures and capital intensive

projects that take a substantial amount of time to complete (optical fiber

network expansions, construction of power lines, etc.).

Realizing one of the project’s stages is like exercising an option that has a

payoff equal to the value of the option to undertake the next step. The value

of each of these options ultimately depends on the value of the investment

once completed. The valuation procedure must take into account the fact

that the manager has the option to delay or abandon the project if market

conditions turn out to be unfavorable. The standard NPV method does not

account for this flexibility. It is as if the project has to be completed without

interruption.

In this situation, information can manifest itself in the price of the output,

in the production costs and/or in the project’s remaining cost of completion.

The possibility of a significant event that can jeopardize or increase the via-

bility or value of the project can also be included.

2.2.3 Compound Options

Investment opportunities that provide immediate cash flows and future in-

vestment possibilities that would be otherwise unrealizable can be included

in this class. An initial project can serve as a stepping stone towards en-

tering and developing (a decision to be made later) profitable new markets.

If the evaluation method ignores or does not value properly the embedded

options, valuable investments can be rejected by the standard NPV method

that considers a project on a stand-alone basis.
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2.2.4 Options to Switch

A technology that allows the substitution between different inputs or the

substitution between several outputs to be produced is a bouquet of switching

options. A direct example is a boiler that can alternate between different

types of fuels to produce electricity. At each moment, the decision maker may

be expected to exploit the most profitable alternative. A flexible technology

is undervalued if it is compared to a dedicated technology without properly

valuing the options related to production flexibility. The standard NPV

method is too rigid in this case. The asset must properly be valued as a

portfolio of switching options.

2.2.5 Options to Abandon

With operating flexibility options, operations can be stopped and restarted

at a negligible cost, thereby allowing a reduction or elimination of operational

losses. If it is costly or impossible to restart operations, one has to consider

the possibility of abandoning current operations in exchange for a salvage

value. With stochastic revenues and costs, a firm may be willing to incur

losses before abandoning a project in order to avoid being out of the market

in the event of an upturn. The degree of the loss tolerance is a function of

the possibilities of re-entering the market after an exit.

The value of such an investment is equal to the expected present value

of its cash flows plus an abandonment option. The standard NPV method

implicitly assumes that operations go on uninterrupted during the productive

life of the asset.
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2.2.6 Real Options Combinations

In real life situations, several of the aforementioned real options can be em-

bedded in a specific project. One must consider the impact of all the options

embedded in the decision making process.

The Boiler example4

As a first illustration, we shall describe the case of a firm that considers

the opportunity of acquiring a boiler to satisfy its energy needs. Currently,

these energy needs are fulfilled by purchasing electricity from outside sources.

The firm has the option to switch from outside electricity to internal boiler

produced energy. Furthermore, we suppose that purchasing a boiler is an

irreversible investment and that the prices of oil Poil, gas Pgas and electricity

Pelectricity are all stochastic.

The firm has access to three different boiler technologies. The first boiler

burns natural gas and costs 63, 500$ to build. Its efficiency-adjusted price of

fuel, defined as the spot price of the relevant fuel times a factor that reflects

the thermal efficiency of the boiler, is 1469Pgaz. The second unit burns oil

and costs 66, 600$ to build. Its efficiency-adjusted price of fuel is 1408Poil.

Finally, a third boiler that is capable of burning oil or gas is available and

costs 68, 700$ to build. It costs S to switch between oil and gas and the

efficiency-adjusted price are the same as for the dedicated boilers, that is

1469Pgaz and 1408Poil for gas and oil respectively. Hence, when the ratio of

the price of oil over the price of gas is superior to 1.04 (1469/1408), it is less

costly to operate with gas.
4See Amran and Kulatilaka (1998), chapter 16.
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Two options can be identified in this problem. First, the firm can switch

from outside electricity to boiler produced energy by incurring the sunk cost

related to building any of the three boilers. This is a waiting to invest option

and the optimal decision rule will be based on relative fuel and electricity

prices. The second option arises from the fact that the third technology per-

mits switching between fuels at a fixed cost of S. When prices are stochastic,

this extra flexibility is a hedge that is not available with a single fuel technol-

ogy. The value of this flexibility may more than offset the higher investment

cost of the dual fuel boiler. If the valuation method does not consider this

extra flexibility, a suboptimal technology may be chosen.

In Figure 2 we illustrate the value of this flexibility. The value Pg is the

ratio Poil/Pgas above which it is optimal to change from oil to gas while the

value Po is the ratio Poil/Pgas below which it is optimal to change from gas

to oil, when the flexible technology is in place. If gas is currently used, it is

not profitable to switch to oil as long as the ratio Poil/Pgas is superior to Po.

Similarly, if oil is currently used, it is not profitable to switch to gas as long

as the ratio Poil/Pgas remains below Pg. Between these two critical values,

the difference between the observed ratio Poil/Pgas and the indifference ratio

1.04 is not large enough to offset the fixed costs S related to switching fuels.

When the ratio is superior to the value PPg, the price of oil relative to gas

is so high that the lower cost of the dedicated gas boiler dominates the total

cost (investment cost + the cost of forfeiting the option to switch between

fuels) of the flexible technology. This justifies the use of the gas boiler. When

the ratio is inferior to the value PPo, the oil boiler is more advantageous.

Between PPo and PPg, it is hard to know if the future ratio will be above or

below 1.04; in this situation flexibility is very valuable, justifying the use of
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the dual fuel technology in spite of its higher investment cost.

Figure 2. Sample of the Price Ratio and Switching Rules

The above analysis is the first step. The optimal technology as a function

of Poil/Pgas is now known. As we mentioned above, the firm is currently

buying electricity from outside sources. Consequently, the second part of

the problem is to determine the optimal timing of a boiler investment. The

optimal timing rule is a function of the price of electricity relative to the

price of oil and gas.

As illustrated in Figure 3, it is not advantageous to build a boiler if the

price of electricity is low. When the price of electricity rises above some

critical value, it is preferable to operate a boiler. Each of the three curves

in Figure 3 characterize for each boiler the relative prices of electricity, oil

and gas that justify investment. Consequently, before any boiler is built, the
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optimal decision rule is a function of the variables Poil/Pgas and Pelectricity/Poil

that yields a choice from the set

{wait, build an oil boiler, build a gas boiler, build a flexible boiler} .

Figure 3. Boiler Buying Rules

With the real options methodology, the objective is to diminish the prob-

ability of being in a situation where electricity prices fall to a level that do

not justify the purchase of a boiler. In this example, the decision maker must

use all the available information to avoid losing the sunk costs of a boiler and

to choose the most suitable technology. It is important to identify and value

all the options that are relevant to a particular investment opportunity in

order to make the optimal decision.

The following example illustrates how the standard NPV method can

induce the holder of an investment opportunity in error.
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The Portlandia example5

Portlandia Ale is a want-to-be start-up microbrewery with no products

on the market yet. Portlandia must invest 0.5 million dollars per quarter for

the next two years and another 12 million dollars at the end of these two

years to develop and launch its first product in order to gain an established

microbrewery status. Currently, management evaluates that the established

company will be worth 22 million dollars in two years, needless to mention

that this value is highly uncertain. We suppose here that the risk free in-

terest rate and the risk-adjusted discount rate are equal to 5% and 21%,

respectively. Furthermore, for this example, continuous compounding will

be used.6

If Portlandia managers use the standard NPV method, they find that the

NPV is negative. That is

NPV = 22e−0.21·2−
(Ã

0, 5 ·
7X
t=0

e−0.05·0.25·t
!
+ 12e−0.05·2

)
= −0, 23M$ < 0,

meaning that the project is rejected.

It is fairly easy to argue that the above valuation method is inadequate. It

is supposed in the above calculation that no matter how market conditions

evolve in the next two years, Portlandia is committed to spending the 12

million dollars necessary to lunch the product. In reality, if the future value of

the company falls below 12 million dollars at the end of year 2, the investment

to launch it should not be made. The launching sunk investment cost can

be avoided if market conditions are unfavorable. By spending the 0.5 million

dollars per quarter, Portlandia acquires the option to spend the extra 12
5See Amran and Kulatilaka (1998), chapter 10.
6See appendix A for details.
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million dollars to obtain the future value of the firm.

If V2 denotes the value of the firm in two years, the payoff of the option

to invest is equal to

max [V2 − 12, 0] .

This situation is equivalent to a European Option valuation problem. If we

use the Black-Scholes framework with a value volatility parameter of 40%,

the value of the option to invest in two years is equal to7

22e−0.21·2N (d1)− 12e−0.05·2N (d2) = 4, 96

with

d1 =
log
³
22e−0.21·2

12

´
+ (0.05 + 1

2
· 0.402) · 2

0.40
√
2

and

d2 =
log
³
22e−0.21·2

12

´
+ (0.05− 1

2
· 0.402) · 2

0.40
√
2

.

Consequently, the value of the option to realize the launch step is equal to

4,96 million dollars and to acquire this option, one must invest 0.5 million

dollars per quarter for two years, that is 3,83 million dollars in present value.

The value of the properly defined project at t = 0 is therefore positive at

1,13 million dollars.

In this case, if the standard NPV criterion is used to decide to invest or

not, Portlandia loses a valuable investment opportunity. The real options

approach considers the fact that management can avoid future sunk costs in

unfavorable situations. It values the opportunity to invest by considering the
7Where N (·) is the cumulative distribution function for a standardized normal random

variable.
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future evolution of the company value. Because the set of possible values is

continuous, a decision-tree analysis in this case is very cumbersome.8

Finally, to be even more realistic, the project can be valued as a set of

compound options. Each 0,5 million dollar outlay is equivalent to purchasing

the option to expend the next amount. In this case, part of the intermediate

expenses can be avoided along with the 12 million dollar outlay. This extra

flexibility gives even more value to the initial project.
8In general, not only is a decision tree approach cumbersome because of the continuity

of the state space, but in most cases, the times at which the different decision nodes are
reached are themselves stochastic variables. This makes the decision tree approach almost
inapplicable.
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3 Real Options, Strategic Planning
and Competitive Interactions

The real options mind-set is particularly well suited for the analysis of strate-

gic decisions regarding significant investments, acquisitions, mergers and al-

liances, technology development and R&D programs, re-engineering and re-

structuring, etc. There are real options embedded in those decisions: they

should not only be recognized and evaluated in an appropriate and rigorous

way but they should also be developed and built into all major strategic

project. The value of the firm depends crucially on the management of real

options.

Strategic planning is first an exercise in managing flexibility, that is in

literally building real options into the future of the firm, and second in char-

acterizing the optimal decision rules to profitably exercise those real options.

Building real options and characterizing the their optimal exercise rules can

be materialized as specifying future decision nodes, whose time of emergence

is typically stochastic, at which some steps (producing, shutting down, de-

laying, expanding, contracting, abandoning, switching, etc.) may or may not

be taken. Drawing a strategic plan is an active exercise in anticipating but

also shaping the future of the firm’s environment. It is an exercise in making

sure that the decision maker will be able to fully benefit from the stochastic

situations to emerge, whatever those situations may turn out to be. To be

bale to achieve such a position, managers must create flexibility and opti-

mally manage it. This pro active role of high level managers in determining

the future of the firm is in some sense their most important task.

The value of strategic planning itself is determined by the quality, signif-
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icance and value, of the real options designed and imbedded in the plan and

by the quality of the evaluation procedure of those real options, including

the management information system underlying the evaluation. It is in this

precise sense that the design and management of real options, through the

exploitation of volatility in the firm’s environment and irreversibility in many

strategic decisions, create value for the firm.

For some observers, the role and value of higher level executives in a

corporation should be defined and understood around the building and eval-

uation of the real options entering into the strategic planning of the firm’s

future. Building, identifying and evaluating real options may represent in

this sense the most important responsibilities of the higher level executives.9

Among investment decision tools, real options theory is rapidly gaining

reputation and influence. Although specialists warn against its often daunt-

ing complexity, they also stress its unique ability to take account of future

flexibility and the importance of future moves and decisions in valuing current

investments.

The real options approach emphasizes the indivisibility and irreversibility

of investments. Indivisibilities often imply a limited number of players, hence

imperfect competition. Yet, while it is often stressed that real option theory is

best to analyze investments of strategic importance, and the word “strategic”

appears repeatedly in the real-options literature, the bulk of that literature

involves decision makers playing against nature rather than against other

rational players, that is, facing a non-reactive business environment rather

than an environment characterized by the presence of aggressive competitors.

The analysis of strategic considerations, in a game theoretic sense, is still
9See Christoffersen and Pavlov (2003).
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in its infancy and should be high in the real-option research agenda. The

proper way to jointly manage competitive interactions and real options is a

particularly demanding challenge that high level managers must be prepared

to face.

Strategic (oligopolistic) competition can force a decision different from

the one prescribed by a pure real options analysis. There may be a first

mover advantage when two or more firms hold the same investment oppor-

tunity. Preemption motives must be introduced in the analysis. It may be

optimal to act faster than what might be prescribed by a real options analy-

sis. For example, if two firms contemplate entering into a risky stochastic

natural monopoly industry where the first mover gains the entire (but un-

known) market, it is clear that real options cannot be blindly applied without

considering the rival’s potential actions. In the above case, the value of the

investment depends on the competitor’s actions or strategy.

The same reasoning applies to a market where network effects are signif-

icant, that is, a market where the value of products and services for the con-

sumer increases with the number of other users. A preemptive strike might

ensure a client base large enough to deter a competitor’s entry. In such cases,

the incentive to enter the market first can be in conflict with what might be

prescribed by a real options analysis. This does not mean that real options

should be ignored, but rather that the model must be formulated in a game

theoretic context.

The presence of a second mover advantage must also be included in the

problem’s formulation. Letting the competitor act first may in some cases

increase the value of the follower’s investment opportunity. For example, if

demand is very uncertain in a particular market, letting the competitor act
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first can yield information about demand that reduces the follower’s risk of

committing resources to an unprofitable venture. The decision maker must

be aware of which context is the appropriate one when applying a real options

approach.

Real options, contrary to financial options, may have a negative value.

As mentioned before, the value of real options derives from the active man-

agement of project flexibility as new information is acquired and exogenous

uncertainty unfolds over time. However, the possibilities of modifying the

planned course of a given project imply that the firm’s commitment to de-

velop and eventually complete the project is relatively low. This lack of

commitment may invite more aggressive behavior from competitors whose

objective may be to drive the firm out of the project or market, or more

aggressive attacks from the opponents to the project. Active management

means that some options should be closed (or exercised) while others should

be kept open. It is a major responsibility of high level executives to identify

which options should be closed in favor of a strong commitment to complete

a project and which options should be kept open in order to be more flexi-

ble in order to benefit from more and better information as well as reduced

uncertainty as time goes by.

It is important to keep in mind that real options analysis must be applied

with caution. In the preceding sections we stressed the importance of adapt-

ing the investment decision process to the specific features of the project.

With equal importance, the firm’s competitive setting must be accounted

for. Otherwise, we may end up employing a tool that is no better than the

standard NPV in the non-competitive context.
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4 Potential Real Options at Bell Canada

The telecommunications industry presents several opportunities for employ-

ing the real options methodology. In this section, we present three cases: an

optical fiber network expansion project, a research and development project,

and an information technology investment. An appendix presents in more

details the methods used to model these investment decisions.

4.1 Optical Fiber Network Expansion

Real options can help determine the optimal timing of an optical fiber net-

work expansion along with the value of the opportunity to invest. We can

view an expansion as a sequential investment with the following steps:10

1. acquire the rights to lay optical fiber in the ground,

2. install ducts,

3. acquire optical fibers and pull them through the ducts, and

4. acquire and install the systems needed to transfer data through the

fibers.

Each step can be viewed as an option with a payoff equal to the value of

the option to undertake the next step. Because of this, the opportunity can

be valued as a set of compound options. For this model, we suppose that

each step can be delayed and that the firm can abandon midway through
10See Lassila (2001).
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the expansion if market conditions turn out to be unfavorable. If each phase

takes time to complete, building delays can be introduced into the model.

With these building delays, an option to abandon during construction can be

included into the analysis. The complexity of the model increases with the

number of flexibility points, more flexibility entails more embedded options.

The simplest way to treat this kind of problems is to suppose that:

1. only the value of an operational network is stochastic, and

2. each step can be realized instantly (no building delays).

The above hypotheses lead to a decision rule that is function of the value

of the underlying operational network. For each of the four phases of the ex-

pansion, a threshold value marks the boundary between investing and wait-

ing. When the stochastic state variable (value of the operational network)

crosses the threshold, it is optimal to invest. In this case, the analysis shows

that the first threshold value is superior to the second, the second is superior

to the third and the third is superior to the fourth. Consequently, each step

of the expansion will be completed as soon as the value of the operational

network crosses the first stage threshold.

An equivalent to the above formulation would be to merge all four stages

into one and value a single waiting to invest option. If the network can be

built instantly, there is no interest in postponing the later stages because it

would go against the value maximization rule. Consequently, we simply have

a single waiting to invest option valuation problem.

It is difficult to imagine that the realization of an optical fiber network

expansion is instantaneous, because of this, the results of the above model
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are of limited interest. The analysis is considerably enriched if we include

building delays by imposing a physical constraint that limits the speed at

which each phase can be realized. In this framework, we can also suppose

that the total cost of the expansion is now a stochastic variable since it is

very likely that costs are also subject to unpredictable fluctuations.

For the model to be tractable, we impose the following:

1. each investment outlay is sunk,

2. previously installed capital does not decay,

3. and a unit is not productive until the project is completed.

As in the previous formulation, realizing part of the project is equivalent

to exercising the option to undertake the next step. The above decision

process is illustrated on Figure 4 where V represents the present value of the

fully operational network, Im the maximum amount of investment allowed at

each period (imposed by the physical constraint), T the uncertain duration

of the expansion and t the time at which it is optimal to start investing.

Figure 4. Decision process for an optical fiber network expansion.
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For this model, two state variables influence the value of the investment

opportunity, these are:

1. the amount of investment required to complete the project, and

2. the stochastic output price.

The analysis yields an optimal investment rule that is a function of both

the output price and the random amount of investment required to complete

the project. For each amount of investment required to complete, a threshold

output price corresponds to the minimum price that justifies investment.

Furthermore, at the threshold, the marginal benefit of investing is equal to

the marginal cost.

With this information, the manager can decide if and when it is optimal

to start building the network and once a step is completed, if and when it

is optimal to proceed with the next one. The relation between the optimal

investment threshold and volatility is as before. Price volatility increases the

incentive to wait in order to avoid investing in what may turn out to be ex

post a more probable unfavorable situation.

In this case, the method values the fact that management can stop invest-

ing if market conditions worsen due to larger costs or a depreciated project

value. The standard NPV is usually computed, at least implicitly, by suppos-

ing that construction will go on uninterrupted even if the context eventually

does not justify the investment. The suspension option captures the value

of being able to avoid future sunk costs in an unfavorable situation. Finally,

if the actual context does not justify the investment, the project is not nec-

essarily worthless. There is a probability that future market conditions will
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improve and that the option of being able to realize the expansion at that

moment has a value.

4.2 Research and Development

Research and development ventures (R&D) can take several years to com-

plete and they can be treated as sequential investments. For these types

of projects, uncertainty usually manifests itself through the output price

and the cost of completion. Because a new product, a new process or a

new technology is developed, the decision maker will likely face uncertainty

concerning costs, and this uncertainty can only be resolved by investing.11

Random catastrophic events can also jeopardize the viability of the project,

for example if there is a possibility that a competitor is quicker in realizing

the same innovation.

All of the above characteristics considerably complicate the analysis com-

pared to the case where only future revenues are uncertain. These difficulties

do not prevent us from using the real options methodology to determine

optimal investment policies for R&D ventures.12

As in the second model of the previous section, we suppose that a maxi-

mum rate of investment is allowed at each period. The total cost of comple-

tion for the project is now a random variable. Because of this, the minimum

time needed to complete the project is now a stochastic state variable.

Furthermore, it is important to know if the patent has been granted even
11To simplify the discussion we do not consider input cost uncertainty. The reason for

this is that its effect on investment is no different from that of cash flow uncertainty.
12See Schwartz (2002).
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if the R&D activity is not yet complete. Because cash flows are likely to fall

drastically at the expiration of a patent, the profitability of the innovation

can depend entirely on the remaining length of the patent.

The first option to be exercised is the commencement option. Once the

project is started, the firm has the option to abandon or slow down the in-

vestment. The most complicated case to model is when the patent is granted

before the project is completed. For this case, the following simplifying as-

sumptions are needed to obtain a solution:

1. the firm will either invest the maximum possible amount or not invest

at all, and

2. if the project is abandoned it cannot be restarted later.

The second condition implies that we ignore the option to restart an idle

project and we only consider the option to commence and abandon. The

negative effect of this assumption is reduced by the fact that the patent is

granted before the project is completed. The reduction of the patent duration

during an idle period reduces the present value of the cash flows from the

investment. This makes delaying an investment very costly.

The analysis yields a function that indicates for each level of investment

remaining the minimum level of cash flows that justifies the continuation or

the commencement of the project. Because the patent has a limited duration,

the function also depends on time.

Simulation results show that standard NPV method significantly under-

states the value of a project. This can be a serious problem if the NPV turns
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out to be negative even though it is optimal to start the process. The option

of abandoning in order to avoid sunk costs in an unfavorable situation is very

valuable. In a multi-step investment process, the real options methodology

does not only concentrate on the future cash flows related to a particular

step but it also considers the importance of the future opportunities that

are available by realizing an intermediate step. The standard NPV not only

understates the true value of the project but also fails to provide the decision

rule needed to optimally manage the opportunity during its realization.

Finally, as we mentioned at the beginning of this section, both the cash

flows and the cost of completion are uncertain. The cost of completion is

affected by technical uncertainty that can only be resolved by investing.

Everything else being equal, this type of uncertainty creates no incentive

to wait, the manager learns about his costs only by investing. Because of

this, investing has a shadow value that is related to learning. This char-

acteristic contributes to reducing the total expected cost of completion and

augmenting the value of the project. An increase in uncertainty augments

the value of learning and this contributes to a larger project value.

For its part, the effect of cash flow uncertainty on the value of the in-

vestment is the same as for cost uncertainty but for a different reason. More

cash flow uncertainty increases the potential upside of the project leaving

unchanged the downside because of the possibility to abandon the project in

an unfavorable situation. Equivalently, because of the higher probability of

an unfavorable situation, the abandonment option has more value.
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4.3 Information Technology Investments

Information technology (IT) investments can be divided into the two follow-

ing categories:

1. IT acquisition projects, and

2. IT development projects.

In an IT acquisition project, the firm has the option to spend a nonrecov-

erable lump sum to acquire the benefits of a specific IT asset. For the general

case, we impose a time limit after which the opportunity is no longer available

and no cash flows can be realized, given that technological advancements can

render the actual technology obsolete. For this model, we suppose that both

the acquisition cost and the benefits related to the asset are stochastic.

Purchasing the technology is equivalent to exercising an American option

before maturity. The above decision process description is illustrated on

Figure 5 where C represents the cash flows from the investment, K the

acquisition cost, T the time limit and t the time at which it is optimal to

invest.

Figure 5. Decision process for an IT acquisition project.
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The real options solution to the above problem yields, for every value of

acquisition costs and time, the benefit level necessary for immediate invest-

ment. In addition, because of technological advances, the present value of

the benefits for the current technology diminish as time goes by. As before,

uncertainty and irreversibility create an incentive to wait and invest when

the probability of an unfavorable situation is smaller. Consequently, the real

options optimal investment threshold is superior to that of the standard NPV

when waiting is optimal. Even though the NPV is positive, it may not be

optimal to invest right away. The standard NPV in this case does not lead to

a solution that maximizes the present value of the investment opportunity.

As for the previous models, the value of the option to wait grows with the

level of volatility in both state variables.

In an IT development project, the total development costs are not ex-

pensed as soon as it is optimal to start investing. The decision process in

this case is very similar to an optical fiber network expansion and a R&D

project. Consequently, the analysis yields a function that gives the optimal

investment rule as a function of the present value of a completed project

and the amount of investment required to complete. For each amount of in-

vestment required to complete the project, the threshold output price corre-

sponds to the minimum project value that justifies investment. The contrast

with the standard NPV is the same as before.
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5 Possible uses of Real Options in the
Telecommunications Regulation Context

A discussion of telecommunication economics will highlight the usefulness

of real options in the formation of regulatory policies in the industry. Cat-

alyzed by the Telecommunications Act of 1996 (USA), several authors have

recognized the importance of developing regulatory pricing policies that take

into account the new reality of the deregulated telecommunications industry.

Inappropriate policies may have disastrous impacts on innovation and invest-

ment with likely consequences being a state of chronic under-investment and

significant consumer surplus losses.

Currently, one of the important examples involving real options deals with

prescriptions of the Local Competition and Interconnection Order of August

1996 (USA). In this case, an incumbent local exchange carrier (LEC) must

give access to its local network to competitors, in particular interexchange

carriers (IXC), at a reasonable price. The competitor is not required by law

to engage in a long term contract. Moreover, the actual access price rule

implicitly supposes that the market is perfectly contestable and that there is

no demand uncertainty.

The consequence of such an access policy may be to lead to an access price

that is consistent neither with the presence of demand uncertainty nor with

the irreversible character of investments in telecommunications infrastruc-

ture. As expected, the deterministic perfect contestability standard leads to

access prices that are lower than those obtained using the more adequate real

options methodology which explicitly recognizes the additional cost compo-

nent that forgone real options represent. It is therefore important to consider
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real options in the determination of access prices and conditions.

There is considerable debate in academic and regulatory circles regarding

the proper theoretical definition and empirical computation of the “cost” on

which the access price should be based. Properly addressing these questions

requires proper accounting of two different but related factors: the real option

approach to costing and valuing investment in infrastructures as well as the

cost sharing approach emerging from cooperative game theory, a form of full

cost allocation based on concepts of efficiency, incentives and equity.
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6 Conclusion: The Management Information
System

The real options mind-set can be characterized as the explicit recognition

that uncertainty creates opportunities and value which require adequate de-

cisions in order to materialize. It gives rigorous content to many high level

managers’ objectives and intuitive decision-making behavior, that is attach

importance to the timing of decisions, control downside risks and capture

upside opportunities, and develop and manage flexibility positions.

What does one need to promote and apply a real options approach to

investment analysis? In a context of imperfect and incomplete information

as well as exogenous uncertainty, a decision making process, making proper

use of the best available analytical expertise, rests on a concerted search and

identification of new information as it becomes available and on the efficient

processing of that information.

Processing the information means its translation into the analytical lan-

guage of state variable evolution (the new levels of the fundamental variables)

and the state variable volatility (the new volatility levels of the fundamental

variables if there are reasons to reevaluate these volatility levels). Hence, the

identification of the sources of uncertainty, of the specific decisions that raise

exposure to profitable outcomes and/or reduce exposure to downside risk,

and the design of optimal decision rules are key ingredients a real options

approach.

In many cases, the systematic gathering of new information will be com-

plemented by a simulation capability in order to determine whether it is time
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to exercise an option or not, that is, whether it is time or not to make the

decision to invest, expand, contract, enter, exit, abandon, etc.

In many aspects, the real options approach and mind-set apply the rigor,

discipline and accuracy of finance in other decision-making areas. The ap-

proach and mind-set are relevant to a wide range of strategic decisions under

uncertainty and irreversibility. Developing and implementing a real options

mind-set among top level executives is nevertheless a challenging task. An-

alytical tools of finance must be adapted and complemented with industrial

analysis and forecasting methods and moreover, each application is likely to

be context specific.

The real options approach is “a capacity and willingness to detect de-

cisions that create opportunities or protect against mishaps, and act upon

them in order to create value for the firm. For managers with such a state of

mind, the real options approach is a tool that allows them to bring intuition

in line with the prescriptions of rigorous decision-making procedures. More

importantly it allows them to give a more accurate quantitative content and

value to intuitive rules, thus gaining an edge over competitors.”13

13See Boyer, Christoffersen, Lasserre, Pavlov (2003).
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A Analytical Techniques

This appendix is a summary of the techniques and the hypotheses used to

develop a real options model for investment decisions. However, before we

present this framework, we will review the concepts of continuous time com-

pounding and continuous time present values.

A.1 The Continuous Time Framework

In all of the following models we will work with a continuous time framework.

In this setting it is supposed that:

1. decisions and transactions can be made at each instant,

2. interest is compounded continuously,

3. stochastic variables can change at any time, and

4. revenues from a project are realized at each instant.

In this section, we will show how to handle discounting when the revenues

from a project are realized at each instant (continuously). First of all, we

define the limit

lim
m→∞

µ
1 +

1

m

¶m
= e. (A.1)

If we let m equal the number of compounding periods in one year and r the

interest rate, the present value of a dollar received in t periods from now

when interest is compounded m times per year is equal to

PV =
³
1 +

r

m

´−mt
. (A.2)
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If we define w = m
r
, we can transform (A.2) into the alternative form

PV =

·µ
1 +

1

w

¶w¸−rt
. (A.3)

Using (A.1), we take the limit of (A.3) when m→∞ (m→∞⇒ w →∞)
we get

PV = e−rt. (A.4)

Equation (A.4) is equivalent to the value of a dollar received in t periods

when interest is compounded continuously (m → ∞). If we define P (t)
as the continuous rate of yearly cash flows for a project at instant t, the

discounted value of these cash flows (DCF) up to time T when cash flows are

realized m times per year is equal to

DCF =
mTX
i=1

1

m
P

µ
i

m

¶h³
1 +

r

m

´mi− i
m

. (A.5)

Because the expression in (A.5) is continuous, taking the limit of (A.5) as

m→∞ is equivalent to supposing that cash flows are realized continuously,

by taking the limit we obtain

lim
m→∞

DCF = lim
m→∞

mTX
i=1

1

m
P

µ
i

m

¶h³
1 +

r

m

´mi− i
m

=

TZ
0

P (t) e−rtdt, (A.6)

where dt = lim
m→∞

1
m
, t ∈ (0, 1] and (A.3) and (A.4) are used. Consequently,

when cash flows are realized continuously, the integral replaces the sum when

it comes to computing present values. For example, if we have P (t) = D,

(A.6) becomes

D

TZ
0

e−rtdt = −D
r

£
e−rt

¤T
0
=
D

r

¡
1− e−rT¢ .
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A.2 Ito Processes and Ito’s Lemma

In real options analysis we deal with functions of stochastic variables. Usu-

ally, we suppose that these stochastic variables evolve according to Ito processes.

Ito processes are used because they are rich enough to represent many ob-

served stochastic phenomena and they have the advantage of being relatively

easy to work with. An Ito process can be characterized by

dx = a (x, t) dt+ b (x, t) dz. (A.7)

Here dz is referred to as a standard Wiener process with dz = εt
√
dt and

εt ∼ N (0, 1). The Ito process most common to real options analysis is the
geometric Brownian motion

dx = αxdt+ σxdz. (A.8)

For example, if dt = 1 (one year), α = 0, 02 (in annual terms) and σ = 0, 20,

we have for (A.8)
dx

x
= a+ σεt.

According to the above equation, the return on x, that is dx
x
, for a one year

period is equal to the expected return α plus an unexpected perturbation

σεt, with εt ∼ N (0, 1). Two realizations of a geometric Brownian motion
for x with dt = 1

365
(one day), α and σ as above are illustrated on the graph

below.
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Figure A.1. Sample paths for a variable x that evolves according to a

geometric Brownian motion with α > 0.

Even though the above process is continuous, the standard rules of calcu-

lus cannot be applied to functions of x because of the “irregular” behavior of

x. Let us write the value of an asset or an investment opportunity as F (x, t).

For real options, we first must find how the value of the opportunity varies

with x, and because of this, the most needed operation is the differential

dF . If x follows an Ito process, Ito’s Lemma states that the differential for

functions of x takes the form:

dF =

·
∂F

∂t
+ a (x, t)

∂F

∂x
+
1

2
b2 (x, t)

∂2F

∂x2

¸
dt+ b (x, t)

∂F

∂x
dz. (A.9)

Finally, if F is a function of several possibly correlated variables, x1, ..., xn
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that follow Ito processes, the multivariate equivalent of (A.9) is

dF =

·
∂F

∂t
+

nX
i=1

ai (x1, ..., t)
∂F

∂xi

+
1

2

nX
i=1

nX
j=1

bi (x1, ..., t) bi (x1, ..., t) ρij
∂2F

∂xi∂xi

¸
dt

+
nX
i=1

bi (x1, ..., t)
∂F

∂xi
dzi. (A.10)

Where ρij is the correlation coefficient between two processes with ρii = σ2i .

A.3 Stochastic Dynamic Programming

For dynamic programming, the value of an entire decision sequence is split-up

into two components. These components are:

1. the value related to an immediate decision, and

2. a function that reflects the value of all subsequent decisions conditional

on the immediate one.

The value of the second component is optimized with respect to all sub-

sequent decisions. Consequently, the sum of both elements needs only to be

maximized with respect to the immediate decision.

The most frequent class of applications in real options analysis is called

optimal stopping problems. Here F (xt, t) denotes the value of an optimally

managed investment opportunity. We suppose here that xt follows an Ito

process and that the value of the opportunity can depend on time. At each

instant, the decision maker must choose between:
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1. invest to obtain the payoff of the investment Ω (xt, t), or

2. defer the decision to the next period.14

This problem expressed in its dynamic programming form and in discrete

time can be written as:

F (xt, t) = max

½
Ω (xt, t) , π (xt, t) +

1

1 + ρ
E [F (xt+1, t+ 1) | xt]

¾
. (A.11)

Where π (xt, t) is a possible profit flow related to waiting and ρ is the ap-

propriate discount rate. Here E [F (xt+1, t+ 1) | xt] is the expected value of
the next period’s optimal value function conditional on not investing today.

This is equivalent to the expected value of the opportunity when the decision

is optimally taken at a (t+ nth) period. For some xt’s, the maximum on the

right hand side of (A.11) will be achieved by choosing Ω (xt, t). For the cases

that concern us, only one value of xt denoted by x∗ (t) marks the boundary

between waiting and investing.

Before we continue, a distinction must be made between a time dependant

and an autonomous problem. For a time dependant problem, the decision

maker does not have the luxury of delaying indefinitely. Eventually at some

date T , he will be in a “take it or leave it” situation and (A.11) will become

F (xT , T ) = Ω (xT , T ) . (A.12)

In this case, the threshold that marks the boundary between waiting and

investing is a function of time x∗ (t). For an autonomous problem, the de-

cision maker is not constrained by time and he can delay the investment

indefinitely. The threshold x∗ in this situation is independent of time.
14Where in this case, Ω (xt, t) usually takes the form max [·, 0] .
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Usually for problems of this type, a continuous time framework is used.

Each period has a length of ∆t and we are interested in the limit problem as

∆t→ 0. In this case, it is supposed that the decision maker can act at each

instant. For an optimal stopping investment problem when it is optimal to

wait (waiting region), (A.11) is equal to

F (xt, t) = π (xt, t)∆t +
1

1 + ρ∆t
E [F (x+∆x, t+∆t) | xt] . (A.13)

If we multiply (A.13) by (1 + ρ∆t) and rearrange we have

F (xt, t) ρ∆t = π (xt, t)∆t (1 + ρ∆t) +E [∆F ] . (A.14)

Finally, if we divide (A.14) by ∆t and let ∆t→ 0 we get

ρF (xt, t) = π (xt, t) +
1

dt
E [dF ] . (A.15)

According to (A.15), in the waiting region, an optimally managed investment

opportunity is equivalent to an asset with a value of F (xt, t). The normal

return on this asset ρF (xt, t) must equal the immediate payoff π (xt, t) plus

the expected capital gain 1
dt
E [dF ]. If xt evolves according to (A.7), we can

apply Ito’s Lemma to (A.15) and show that F (xt, t) must satisfy the partial

differential equation

ρF (xt, t) = π (xt, t) +
1

dt
{[Ft (xt, t) + a (x, t)Fx (xt, t)

+
1

2
b2(x, t)Fxx (x, t)

¸
dt

¾
= π (xt, t) + Ft (xt, t) + a (x, t)Fx (xt, t)

+
1

2
b2(x, t)Fxx (x, t) . (A.16)

As mentioned, the threshold x∗ (t) marks the boundary between waiting and

investing. At x∗ (t) the firm is indifferent between the two alternatives, we

thus have the boundary condition (value matching condition)

F (x∗ (t) , t) = Ω (x∗ (t) , t) . (A.17)
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For this type of problem, x∗ (t) is endogenous and it must be found along

with F (xt, t), we thus need the extra boundary condition

Fx (x
∗ (t) , t) = Ωx (x

∗ (t) , t) . (A.18)

Condition (A.18) is called a smooth-pasting condition. It requires that the

slopes of both functions match at the boundary. If the problem is time

dependent, we must add the terminal condition (A.12) and in both cases we

need a condition at x = 0. Finally, if the problem is autonomous, we have

Ft (xt, t) ≡ 0, and we can write Fx (xt, t) = F 0
(x) and Fxx (x, t) = F

00
(x).

An example of an autonomous optimal stopping problem will clarify the

above explanations.15 In this example, the decision maker can pay a sunk

cost I in return for a project whose value is given by F (V ), where V evolves

according to the geometric Brownian motion

dV = αV dt+ σV dz, (A.19)

where dz is the increment of a standard Wiener process. The goal is to

determine the value of the investment opportunity denoted by F (V ) and the

critical value V ∗ at which it is optimal to incur the sunk cost I.16 Because no

cash flows are realized by simply holding the opportunity, we suppose that

π (xt, t) = 0. According to (A.15), in the waiting region F (V ) must satisfy

ρF (V ) =
1

dt
E [dF ] . (A.20)

With the help of Ito’s Lemma, we expand (A.20) to get

ρF (V ) =
1

dt
E

·
αV F

0
(V ) dt+

1

2
σ2V 2F

00
(V ) dt+ σV F

0
(V ) dz

¸
= αV F

0
(V ) +

1

2
σ2V 2F

00
(V ) (E [dz] = 0), (A.21)

15See Dixit and Pindyck (1994) for a more detailed exposition.
16For this example, we consider an autonomous problem.
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that is

αV F
0
(V ) +

1

2
σ2V 2F

00
(V )− ρF (V ) = 0. (A.22)

With the boundary conditions

F (0) = 0 (A.23)

F (V ∗) = V ∗ − I (A.24)

F
0
(V ∗) = 1. (A.25)

Conditions (A.24) and (A.25) are the continuity or value matching condition

and the smooth pasting condition. According to (A.23), if V is ever equal

to zero, it remains there indefinitely, the opportunity is then worthless. The

general solution to equation (A.22) is

F (V ) = A1V
β1 +A2V

β2 (A.26)

where A1 and A2 are constants to be determined and β1 and β2 are the roots

of the quadratic equation

1

2
σ2β (β − 1) + αβ − ρ = 0. (A.27)

We have, β1 > 1 and β2 < 0. Because of condition (A.23) and β2 < 0 we

must have A2 = 0, otherwise F (V ) will tend to infinity when V goes to zero.

Finally, (A.24) and (A.25) can be used to find A1 and V ∗:

V ∗ =
β1

β1 − 1
I with

β1
β1 − 1

> 1 (A.28)

and

A1 =
(V ∗ − I)
(V ∗)β1

. (A.29)

These results are consistent with those of the simple two period example pre-

sented previously. According to (A.28) and because β1 > 1, with uncertainty,
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the optimal investment criterion requires that V ∗ > I while NPV requires

V ∗ = I. The graphic below illustrates the solution F (V ) and the straight

line represents max [V − I, 0].

Figure A.2. Graphic of solution to optimal stopping example.

A.4 Contingent Claims Analysis

The essence of contingent claims analysis is to use specific combinations of

traded assets to determine the value of a non-traded asset. In this framework,

one assumes that it is possible to create portfolios that exactly replicate the

risk and return characteristics of a non-traded asset. Two assets that have

the same risk and return characteristics must have the same value, otherwise

arbitrage opportunities would exist. If we rule out arbitrage opportunities,

contingent claims analysis allows us to find the value of the non-traded asset.
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If the asset is an investment opportunity, the optimal investment strategy

can also be found. The following example illustrates the aforementioned

principles.

As in the previous section, F (xt, t) represents the value of an investment

opportunity and xt the firm’s output. To apply contingent claims analysis,

the output must either be directly traded on organized markets or spanned

by other traded assets.17 To simplify the example, we suppose that xt is

traded and that it follows the geometric Brownian motion

dx = αxdt+ σxdz. (A.30)

The asset’s average growth rate is equal to α and we define µ as the expected

risk adjusted expected return required to hold x.18 Furthermore, we suppose

that µ > α and that δ = µ− α represents the dividend or convenience yield

related to holding x. Consequently, producing and selling a unit of x is not

the same as holding the opportunity to produce it, there is an opportunity

cost related to holding and not producing that is equivalent to δ. To build

the replicating portfolio, we invest one dollar in the riskless asset (with return

r) and we purchase n units of x, this portfolio costs (1 + nx) dollars. For a

short period of time dt, the return on the riskless asset is rdt and the random

return on x is (A.30) plus the dividend or convenience yield. Consequently,

the random return per dollar invested in the portfolio is equal to

r + n (α+ δ)x

1 + nx
dt+

σnx

1 + nx
dz. (A.31)

In the waiting region, the return from holding the investment opportunity

arises strictly from capital gains because we suppose that no other revenues
17A spanning asset must have the same uncertainty profile as the asset to be spanned.
18We could use the CAPM to determine µ.
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are realized from simply holding the opportunity. By Ito’s Lemma, the ran-

dom capital gain for the investment opportunity is

dF =

·
Ft (xt, t) + αxFx (xt, t) +

1

2
σ2x2Fxx (xt, t)

¸
dt

+σxFx (xt, t) dz, (A.32)

and the random per dollar return for the investment opportunity is equal to£
Ft (xt, t) + αxFx (xt, t) +

1
2
σ2x2Fxx (xt, t)

¤
F (xt, t)

dt+
σxFx (xt, t)

F (xt, t)
dz. (A.33)

The second parts of (A.31) and (A.33) represent the risky components of the

returns on both assets. If we want the portfolio to exactly replicate the risk

of owning the investment opportunity, we must have
nx

1 + nx
=
xFx (xt, t)

F (xt, t)
. (A.34)

If we have (A.34), both assets have the same risk. Consequently, the expected

per dollar return from holding the portfolio must be equal to that of holding

the opportunity, in this case

Ft (xt, t) + αxFx (xt, t) +
1
2
σ2x2Fxx (xt, t)

F (xt, t)
=
r + n (α+ δ)x

1 + nx
. (A.35)

If we substitute (A.34) in (A.35), we show that F (xt, t) must satisfy
1

2
σ2x2Fxx (xt, t) + (r − δ)xFx (xt, t) + Ft (xt, t)− rF (xt, t) = 0, (A.36)

along with the boundary conditions that were specified in the previous sec-

tion.

Finally, if the state variable is not a traded asset, a traded asset that

spans the uncertainty of the state variable can be used to form the replicating

portfolio. Contrary to the dynamic programming approach, no hypotheses

are needed concerning the discount rate and the growth rate of the state

variable. However, it is necessary to have assets that span the risk and

return characteristics of the asset to be valued.
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A.5 Equivalent Martingale Measures

In the preceding section, no arbitrage arguments are used to obtain a partial

differential equation that enables us to find the project’s valuation formula,

explicitly or numerically. With the same assumptions, another equivalent

solution method is available.

With the equivalent martingale measure method, the probability distri-

bution of the state variable discounted at the risk free interest rate is trans-

formed into a martingale.19 In this case, the current value of the investment

opportunity is equal to its expected (with the transformed distribution) fu-

ture value discounted at the risk free rate. It can be shown that the valuation

function obtained with the equivalent Martingale measure method satisfies

the same partial differential equation as the one obtained with contingent

claims analysis.
19Simply put, a stochastic process is a martingale if the best forecast of an unobserved

future value is equal to the last observed value.
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B Solution Methods

The most common solution methods for real options problems will be pre-

sented in this section. Our goal is not to provide an exhaustive description

of the methods. We aim to show the reader that well structured real option

problems are not simply abstract descriptions of reality, but can be resolved

and fruitfully applied to real life situations.

B.1 The Binomial Method

We illustrate the binomial method with the help of a simple American option

valuation problem.20 For this method, we assume that in a short interval of

time the value of the state variable can only experience a specified up or

down movement.

To understand the intuition behind the method, we first value a European

call option. This option has an exercise price of $21 and expires in three

months. We suppose that the stock pays no dividends. Furthermore, in

three months the stock can take only two values, $22 or $18. The above

situation is illustrated in figure B.1.
20See Hull (1997) and Cox, Ross and Rubinstein (1979).
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Figure B.1. Evolution of the underlying stock price for the one period

European option example.

The idea behind the binomial method is to evoke the no arbitrage condi-

tion to obtain a valuation formula. In this case, the value of the option will be

independent of subjective information such as the investor’s risk preferences

and the probability of an up or down movement in the stock price.

To find the value of the aforementioned European option, we consider a

portfolio composed of a long position in ∆ shares of the underlying stock and

a short position in one call option. We choose ∆ so that portfolio has the

same value in all of the contingencies illustrated in figure B.1, that is:

22∆− 1 = 18∆ ⇒ ∆ = 0.25.

Consequently, the portfolio composed of a long position in 0.25 shares of the

underlying stock and a short position in one call option will then be worth

22 × 0.25 − 1 (0.25× 18) = 4.5 in both contingencies. The above portfolio
is then risk free. Because of this, it must earn the risk free rate of return.

If this is not the case, arbitrage opportunities are available and this violates

the presupposed no arbitrage condition.

We suppose here that the risk free interest rate is equal to 12%, the
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portfolio at the beginning of the period must then be worth 4.5e
−0.12
4 = 4.367.

The price of the option today is denoted by f and it is equal to

20× 0.25− f = 4.367 ⇒ f = $0.633.

We can generalize the above one period example. Suppose that the cur-

rent stock price S can move up to Su or down to Sd (u > 1, d < 1). The

returns in both situations are u− 1 and d− 1. The payoff of the derivative
after an up or down movement is equal to fu and fd respectively (fu and fd

are supposed known at the beginning of the period), and the current value

of the derivative is denoted by f .

As before, we choose a long position in ∆ shares so that the portfolio

composed of a short position in the option and a long position in the stock

is riskless, we must have

Su∆− fu = Sd∆− fd ⇒ ∆ =
fu − fd
Su− Sd.

The cost of the portfolio must then be equal to

S∆− f = (Su∆− fu) e−rT ,

where r > 0 is the risk free rate and T is the length of period. If we substitute

for ∆ we get

f = e−rT [pfu + (1− p) fd] , (B.1)

where

p =
erT − d
u− d . (B.2)

An interesting interpretation can be given to expressions (B.1) and (B.2).

Because we suppose that d − 1 < r < u − 1, (B.2) can be interpreted as a

57



probability.21 If we suppose that q is the probability of an up movement in

the price of the stock, the expected value of the stock price in a binomial

model is

E (ST ) = qSu+ (1− q)Sd. (B.3)

If we substitute (B.2) for q in (B.3) we get

E (ST ) = Se
rT .

Hence, p is equivalent to the probability of an up movement in a risk neu-

tral world. Consequently, according to (B.1), using the binomial valuation

method is equivalent to supposing a risk neutral world (with its correspond-

ing probability distribution) to price an option.

The above example can easily be extended to an option with early exercise

features (American option). A two period example is summarized in figure

B.2. In this case, P (S) is a general payoff function that depends on the stock

price, T is the length of a period and fuidn−i is the value of the option at each

node with

n = 0 and i = 0 at the initial node,

n = 1 and i = 0, 1 after the first period, and

n = 2 and i = 0, 1, 2 after the second period.

21If we have d− 1 < u− 1 < r a riskless profit can be made by shorting the stock and
lending at the risk free rate. Under the assumption of no arbitrage we can rule out this
possibility. The situation r < d − 1 < u− 1 is not possible according to the assumptions
on r (r > 0) and d (d− 1 < 0).
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Figure B.2. Generalization of the Binomial Method for an American option

At each node, the holder of the option must decide if it is more profitable

to exercise now or to wait and exercise at a latter period. Consequently, the

value of the option at each node is equal to the maximum between the value

of the payoff function and the expected continuation value.

At the terminal node (after the second period) we have

fuu = max
£
P
¡
Su2

¢
, 0
¤

if the price reaches Su2

fud = max [P (S) , 0] if the price remains at S

fdd = max
£
P
¡
Sd2

¢
, 0
¤

if the price falls to Sd2,
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and at the intermediate node (after the first period) we have

fu = max
£
P (Su) , e−rT (pfuu + (1− p) fud)

¤
if the price reaches Su

fd = max
£
P (Sd) , e−rT (pfud + (1− p) fdd)

¤
if the price falls to Sd.

Finally, the value of the option at the initial node is then given by

f = max
£
P (S) , e−rT (pfu + (1− p) fd)

¤
.

B.2 The Finite Difference Method

The dynamic programming and contingent claims methods yield partial dif-

ferential equations with boundary and initial conditions. If no closed form

solution exist for these partial differential equations, numerical techniques

have to be employed. One of the most common techniques is the finite dif-

ference method.

A general example similar to a problem often encountered in real options

analysis will be used to describe the finite difference method. In this case, we

need to find a function u (z, τ) that satisfies the partial differential equation

∂u

∂τ
=

∂2u

∂z2
(B.4)

for all z inferior to an unknown z∗ (τ). Here z ∈ <, τ ∈ (0,Υ] and when
z ≥ z∗ (τ), u (z, τ) = h (z, τ). The function u (z, τ) must also satisfy the

conditions

u (z, 0) = h (z, 0) , (B.5)

lim
z→−∞

u (z, τ) = 0, (B.6)

u (z∗ (τ) , τ) = h (z∗ (τ) , τ) , (B.7)
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∂

∂z
u (z∗ (τ) , τ) =

∂

∂z
h (z∗ (τ) , τ) (B.8)

and the constraint

u (z, τ) ≥ h (z, τ) . (B.9)

In this case, z∗ (τ) is an unknown boundary value that is function of τ .

The aforementioned boundary value is analogous to an optimal investment

threshold in a time dependant real options problem. For its part, h (z, τ)

is an arbitrary function similar to the net present value of an investment.

The presence of the moving boundary conditions (B.7) and (B.8) prevents

us form obtaining a closed form solution to u (z, τ).

To eliminate the complications that arise from conditions (B.7) and (B.8),

we express the above problem in the following linear complementary form:µ
∂u

∂τ
− ∂2u

∂z2

¶
≥ 0, (u (z, τ)− h (z, τ)) ≥ 0

with µ
∂u

∂τ
− ∂2u

∂z2

¶
· (u (z, τ)− h (z, τ)) = 0, (B.10)

with u and ∂u
∂z
continuous. Both of the equalities in (B.10) hold at z∗ (τ).

The next step is to formulate the problem so that it can be solved numer-

ically. For this, we first divide the z and τ axes into equally spaced nodes

that are separated by a distance of δz and δτ respectively. From now on,

only the values of u evaluated at each node will are important and we express

u as

umn = u (nδz,mδτ) (B.11)

where

−N ≤ n ≤ N and 0 ≤ m ≤M.
Where N is a large positive integer and M = Υ

δτ
.
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The second step consists of obtaining discrete approximations for the

partial derivatives in (B.4). To obtain an approximation for ∂u
∂τ
, we take a

first-order Taylor expansion with respect to τ around (z, τ)

u (z, τ + δτ) = u (z, τ) + δτ
∂u

∂τ
(z, τ) +

1

2
(δτ)2

∂2u

∂τ 2
(z, τ + ψδτ) , (B.12)

and we use the approximation

∂u

∂τ
(z, τ) ≈ u (z, τ + δτ)− u (z, τ)

δτ
=
um+1n − umn

δτ
. (B.13)

The above approximation is O (δτ), −δτ can also be used. Now, to obtain
∂2u
∂z2

we define the following Taylor expansions:

u (z + δz, τ) = u (z, τ) + δz
∂u

∂z
(z, τ) +

1

2
(δz)2

∂2u

∂z2
(z, τ)

+
1

6
(δz)3

∂3u

∂z3
(z, τ) +

1

24
(δz)4

∂4u

∂z4
(z + εδz, τ) (B.14)

and

u (z − δz, τ) = u (z, τ)− δz
∂u

∂z
(z, τ) +

1

2
(δz)2

∂2u

∂z2
(z, τ)

−1
6
(δz)3

∂3u

∂z3
(z, τ) +

1

24
(δz)4

∂4u

∂z4
(z + ςδz, τ) .(B.15)

we add (7) and (7) to obtain the approximation

∂2u

∂z2
(z, τ) ≈ u (z + δz, τ) + 2u (z, τ) + u (z − δz, τ)

(δz)2

=
umn+1 − 2umn + umn−1

(δz)2
. (B.16)

The above approximation isO
¡
(δz)2

¢
, because of this, approximations (B.13)

and (7) become more accurate as the nodes get closer. With the help of

expressions (B.13) and (7), we represent (B.4) in its discrete form as

um+1n − umn
δτ

=
1

2

µ
umn+1 − 2umn + umn−1

(δz)2
+
um+1n+1 − 2um+1n + um+1n−1

(δz)2

¶
. (B.17)
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If we define

θ =
δτ

(δz)2

and

Wm
n = umn (1− θ) +

θ

2

¡
umn+1 + u

m
n−1
¢

problem (B.10) can be written as

um+1n (1 + θ)− θ

2

¡
um+1n+1 + u

m+1
n−1

¢−Wm
n ≥ 0

with µ
um+1n (1 + θ)− θ

2

¡
um+1n+1 + u

m+1
n−1

¢−Wm
n

¶
· (umn − hmn ) = 0. (B.18)

Condition (B.5) in its discrete form is equivalent to u0n = h0n and (B.6) is

equivalent to um−N = 0.

To obtain an approximation of umn for −N ≤ n ≤ N and 1 ≤ m ≤
M , an iterative algorithm is used. We shall give a brief description of the

Projected Successive Over-relaxation algorithm (PSOR). Starting with the

function’s initial values defined by (B.5) and (B.6), the algorithm generates

approximations to the unknown function values. In this case, we define um+1

as the um+1n vector for all m and n and k as the kth iteration, the problem

defined by (B.18) is solved by iterating on the following equations:

Y m+1,k+1n =
1

1 + θ

µ
Wm
n +

θ

2

³
um+1,kn+1 + um+1,k+1n−1

´¶
um+1,k+1n = max

¡
um+1,kn + w

¡
Y m+1,k+1n − um+1,kn

¢
, hm+1n

¢
, (B.19)

with 0 < w < 2. When
°°um+1,k+1 − um+1,k°°

2
(convergence criterion) is

considered negligible we fix um+1 = um+1,k+1. This algorithm is constructed

in such a way that each constraint in (B.18) is satisfied and it is always stable

and convergent.
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B.3 The Least Squares Monte Carlo (LSM) Method

Before the LSM approach, Monte Carlo methods were difficult to apply to

value options with early exercise features. The main difficulty came from

determining the expected continuation value each time exercising the option

is considered. The LSM approach ingenuously solves this problem and, in

addition to this, it is flexible enough to incorporate several possibly correlated

state variables.22

We illustrate the method with the help of a simple non-autonomous opti-

mal stopping problem. In this case, the value of an investment opportunity

depends on a single stochastic state variable Pt. In continuous time, the

dynamics of the state variable are given by

dP = αPdt+ σPdz, (B.20)

with dz = εt
√
dt and εt ∼ N (0, 1). At each instant t ∈ [0, T ], the firm

can either exchange the investment opportunity for a project worth Ω (Pt, t)

or postpone the decision to the next period. At time t, the value of the

optimally managed investment opportunity is represented by

F (Pt, t) = max
τ∈[t,T ]

©
e−r(τ−t)Et [Ω (Pτ , τ)]

ª
. (B.21)

Here τ is the optimal stopping time chosen from [t, T ] and Et is the expec-

tation conditional on the information available at time t.

To implement the method, we first divide the problem’s time frame into

N nodes separated by a distance of ∆t = T
N
. We are now only concerned by

the following set of possible stopping times

{t0 = 0, t1 = ∆t, ..., tN = N∆t} .
22For more details, see Longstaff and Schwartz (2001) and Gamba (2002).
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Because of this, the method yields a discrete time approximation of F (Pt, t).

The next step is to simulate K paths of the state variable according to the

following solution of (B.20)

P (t+∆t) = P (t) e(α−
1
2
σ2)∆t+σ

√
∆tεt. (B.22)

We denote Pt (w) as the value of the state variable along the wth path at

time t and τ (w) as the path’s optimal stopping time. If we define t as the

current date, τ (w) is generated with the information available up to date t,

if Pt is Markov, it contains all this information.23

We proceed recursively to find (B.21) along each path. At each node, the

decision maker must choose between investing and waiting. At time N∆t,

the value of the opportunity is

F (PtN (w) , tN) = max {Ω (PtN (w) , tN) , 0} w = 1, ...,K, (B.23)

and at (N − 1)∆t it is

F
¡
PtN−1 (w) , tN−1

¢
= max

©
Ω
¡
PtN−1 (w) , tN−1

¢
,

e−r(∆t)EtN−1 [F (PtN (w) , tN)]
ª
.(B.24)

We proceed in this fashion up to t1, at this point, the decision rule is

F (P1 (w) , t1) = max {Ω (Pt1 (w) , t1) ,
e−r(∆t)Et1 [F (Pt2 (w) , t2)]

ª
. (B.25)

The optimal stopping time along the wth path satisfies the condition

τ (w) = inf {t | F (Pt (w) , t) = Ω (Pt (w) , t)} with t ∈ {t0, ..., tN} . (B.26)
23The LSM approach can be applied in non-Markovian settings.
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This means that the decision maker will invest the first time the value of the

project is superior or equal to the expected continuation value. Finally, to

find F (P0, t0), we average the discounted path wise values:

F (P0, t0) =
1

K

KX
w=1

e−rτ(w)Ω
¡
Pτ(w) (w) , τ (w)

¢
. (B.27)

At each step along each path, the unknown is the expected continuation

value. At node tn the expected continuation value is equal to

Ψ (Ptn, tn) = e
−r∆tEtn

£
F
¡
Ptn+1 , tn+1

¢¤
. (B.28)

The key insight underlying the LSM approach is that (B.28) can be ex-

pressed as the following combination of basis functions

Ψ (Ptn, tn) =
∞X
j=1

φj (tn)Lj (Ptn, tn) . (B.29)

Where φj (tn) are the coefficients of the basis functions and Lj is the j
th

element of the expectation’s orthonormal basis.24 To approximate (B.29) we

use the first J < ∞ elements of the basis and we estimate the coefficients

by least squares with the cross sectional information of the simulation. With

this we obtain an approximation of the continuation value.

If we proceed recursively, starting at node N − 1, the continuation value
along each path w is equal to

e−r∆tmax {Ω (PtN (w) , tN) , 0} . (B.30)

To obtain an estimate of (B.29) at tN−1, we regress (B.30) for each path on

a constant and the J basis functions. Consequently at tN−1 for path w, the
24For technical details see Longstaff and Schwartz (2001).
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continuation value is estimated by

bΨ ¡PtN−1 (w) , tN−1¢ = JX
j=1

bφj (tN−1)Lj ¡PtN−1 (w) , tN−1¢ (B.31)

where bφj (tn) is the least square estimate of the jth basis coefficient. Finally,
the value of the investment opportunity at node N − 1 is equal to

F
¡
PtN−1 (w) , tN−1

¢
= max

©
Ω
¡
PtN−1 (w) , tN−1

¢
,bΨ ¡PtN−1 (w) , tN−1¢o . (B.32)

To obtain an approximation of the expected continuation value at node N −
2, we proceed as previously by using the discounted value of (7) for the

continuation value along each path. We repeat this procedure to obtain an

estimate of F (P0, t0).
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