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1 Introduction

There are many circumstances where one may expect that the co-movements
between financial assets undergo fundamental changes. For example, portfo-
lio holders may worry about the impact of the deregulation of an industry on
their optimal allocation of assets which depends on conditional covariances
(in a mean-variance setting). The deregulation may cause fundamental shifts
in the (conditional) correlations across the asset holdings. Likewise, hedg-
ing strategies involving foreign exchange may be adversely affected by central
bank policy shifts. Emerging markets is another example where the potential
of breaks in co-movements may occur. The world equity markets liberaliza-
tion and integration may represent an example of structural changes in the
relationship of these markets. Similarly, the recent evidence of the Asian and
Russian financial crises, transmitted across markets, have serious effects for
investors, corporations and countries. The global character of financial mar-
kets presents an additional reason for examining the transmission of breaks
and their effects in the co-movements between financial as well as real as-
sets. Most financial asset pricing theories and models assume that covari-
ances between assets are stable (possibly time varying) whereas more recent
empirical approaches recognize the presence of time heterogeneity such as
regime changes (e.g. Bollen et al., 2000), institutional changes (e.g. Garcia
and Ghysels, 1998, Bekaert et al., 2002) and extreme events (e.g. Hartmann
et al., 2000). Pastor and Stambaugh (2001) have also recently shown that
structural breaks could be one of the explanation of the equity premium
puzzle.

We propose procedures designed to uncover structural changes in multi-
variate conditional covariance dynamics of asset returns. The procedures are
based on testing for breaks in the conditional correlations involving normal-
ized or risk adjusted returns which are defined as the returns standardized
by the conditional variance process. Hence the conditional correlation is
equivalent to the conditional covariance process of normalized returns that
may exhibit a general form of dependence (e.g. φ− or α−mixing) as well
as heavy tails. We start from a multivariate dynamic heteroskedastic asset
return process. Instead of trying to explore the co-movements via a paramet-
ric specification and test for structural change in the parameters, we adopt
a reduced form approach which consists of testing for structural change in
static or dynamic relationships involving marginalizations of the multivari-
ate process. Our approach relates to a large class of multivariate ARCH-type
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models with constant or dynamic conditional correlation (see, for instance
Bollerslev et al., 1994). Although there is some loss of information when we
look at the individual normalized returns, these losses are offset by gains in
reducing the overparameterized multivariate GARCH type models and by fo-
cusing on the conditional covariance specification. In addition this approach
provides a simple and computationally efficient framework for testing and
estimating the unknown (multiple) breaks in the co-movements of volatility
in a context that allows general forms of dependence as well as heavy tails
without having to explicitly estimate their form.

The choice of standardized returns as an object of interest is motivated
by both finance and statistics arguments. From the finance point of view the
standardized returns represent the fundamental measure of reward-to-risk
consistent with conventional mean-variance analysis. The statistical argu-
ments are a bit more involved. Our approach can be viewed as a two-stage
method for reducing the dimensionality of multivariate heteroskedastic con-
ditional volatility models to a framework involving returns normalized by
purely data-driven volatility filters in the first stage and cross products of
normalized returns in the second stage. Recently, Engle (2002), Engle and
Sheppard (2001) and Tse and Tsui (2002) rely on a similar two-stage pro-
cedure to handle multivariate GARCH models. Their stages are both para-
metric whereas ours involve a first stage that is purely nonparametric. Our
reduction approach does not aim in presenting an alternative specification
or estimation of multivariate GARCH models. Instead, we adopt this two
stage approach as a method to perform change-point tests in multivariate
heteroskedastic models as well as to isolate the source of breaks that may
occur in the conditional covariance. The two-stage procedure can be con-
sidered as a semiparametric approach since the second stage can allow for
general types of dependence, data-driven spot and quadratic volatility mea-
sures as well as leptokurtic or asymmetric distributions. More specifically, let
r(m),t := log pt−log pt−m be the discretely observed time series of continuously

compounded returns withmmeasuring the time span between discrete obser-

vations. We computeX(m),t := r(m),t/σ̂(m),t involving purely data-driven esti-
mators σ̂(m),t. Foster and Nelson (1996) proposed several rolling sample type
estimators. Their setup applies to ARCH as well as discrete and continuous
time SV models (which are in our application marginalizations of multivari-
ate processes). In addition to the Foster and Nelson rolling volatility filters
we also consider high-frequency volatility filters, following the recent work of
Andersen et al. (2001), Andreou and Ghysels (2002a), Barndorff-Nielsen and
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Shephard (2002), among others. The data-driven measures of normalized re-
turns provide the estimation of the first stage in multivariate heteroskedastic
returns models. Moreover, keeping the first stage data-driven has the ad-
vantage that we do not specify, and therefore also not potentially misspecify,
a parametric model for volatility. This may eliminate potential sources of
misspecification and avoid erroneous inference on the presence of structural
breaks. In addition, the data-driven normalized returns process, X(m),t, is
invariant to change-points in the univariate volatility dynamics. The second
stage deals with the conditional covariance defined as the cross-product of
normalized returns, say Y12,(m),t := X1,(m),tX2,(m),t, for a pair of assets given
by the vector (1, 2)′. This process may exhibit constant, weak or strong de-
pendence (as in multivariate constant or dynamic correlation GARCH and
Factor models, respectively) as well as a general functional form driven by a
heavy tailed distribution. The simulation and empirical results in the paper
show that risk adjusted returns, using various volatility filters, are in most
cases non-Gaussian with different types of temporal dependence structure.

The paper extends the application of recent change-point tests in Kokoszka
and Leipus (1998, 2000) and Lavielle and Moulines (2000) to the conditional
covariance of Multivariate GARCH (M-GARCH) models, using the above
two stage procedure for detecting breaks in the co-movements of normalized
returns. The simulation results show that these tests have good size and
power properties in detecting large structural breaks.

The paper is organized as follows. In section 2 we discuss the general
models and their reduced forms as well as the transformations of the data that
form the basis of the testing procedure. Section 3 discusses the recent change-
point tests, developed in a univariate context, and a method to apply them to
the conditional covariance processes of multivariate heteroskedastic models.
The fourth section presents a brief Monte Carlo experiment that examines
the statistical properties of normalized returns and provides a justification
for the testing strategies adopted. The size and power of the aforementioned
tests are also investigated. In the empirical section we document using a
ten year period of two representative high frequency FX series, YN/US$
and DM/US$, that the conditional covariance specified by regression models
of daily risk-adjusted returns with non-Gaussian errors describe adequately
their co-movements. The main thrust of our procedure is then to examine
breaks in the co-movements of normalized returns using CUSUM and least-
squares methods for detecting and dating the change-points. A final section
concludes the paper.
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2 Models and filters

It has long been recognized that there are gains from modeling the volatility
co-movements. In practice one stumbles on the obvious constraint that any
multivariate model is hopelessly overparameterized if one does not impose
any type of restriction (see for instance, Engle (2001) for some of the open
questions in multivariate volatility models). Bollerslev et al. (1994) provide
an elaborate discussion of various multivariate ARCH type models and re-
view the different restrictions which have been adopted to make multivariate
volatility models empirically feasible. Ghysels et al. (1996) discuss vari-
ous multivariate SV models, both in discrete and continuous time. In this
section we describe the classes of multivariate heteroskedastic models that
fall within the context of our statistical procedures for change-point testing
the dynamic co-movements of asset returns. Broadly speaking there are two
classes of multivariate volatility models, both being among the most widely
applied parametric specifications. These are (1) multivariate factor models,
see for instance Diebold and Nerlove (1989), Engle et al. (1990), Harvey et
al. (1994), Ng et al. (1992) and many others and (2) the conditional cor-
relation models, see for instance Bollerslev et al. (1988), Bollerslev (1990),
Bolleslev et al., (1994) and more recently Engle (2002), Engle and Sheppard
(2001) and Tse and Tsui (2002). Since the statistical procedures adopted
here share many features with the latter we will devote the first subsection
to the conditional correlation volatility specification. A second subsection
is devoted to factor models and a final third subsection describes various
volatility filters which are adopted for dynamic heteroskedastic series.

2.1 Conditional correlation models

The statistics developed in this paper apply to a two-step procedure that
shares several features with the recent work on Dynamic Conditional Cor-
relation (henceforth DCC) of Engle (2002), Engle and Sheppard (2001) and
Tse and Tsui (2002). The appeal of DCCmodels is that they feature the flex-
ibility and simplicity of univariate ARCH models but not the complexity of
typical multivariate specifications. This decomposition also presents an ad-
vantage for change-point detection in multivariate heteroskedastic settings,
discussed further in section 3. The statistical inference procedures proposed
apply to several multivariate specifications given that the conditional covari-
ance process satisfies some general regularity conditions. It will be convenient
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to start with a discrete time framework and to set notation we assume that
an n-vector of returns Rt is observed. In the empirical applications n will be
equal to 2, but our techniques extend to n > 2. Consider the ratio Xi,t :=
ri,t/σi,t where ri,t and σi,t is the return and conditional volatility (standard
deviation) of the ith return process, respectively, using the univariate filtra-
tion of each series separately. Then the conditional correlation between pairs
of assets, e.g. (1, 2)′ is:

ρ
12,t = Et−1 (X1,tX2,t) := Et−1 (Y12,t) (2.1)

where we denote Y12,t := X1,tX2,t. The original specification of Bollerslev
(1990) assumed that ρ

12,t := ρ
12
, yielding a CCC model, i.e. a Constant Con-

ditional Correlation multivariate specification. It was noted that the CCC
specification offered many computational advantages, but the assumption of
constant ρ

12
did not share much empirical support (see e.g. Engle (2002)

Engle and Sheppard (2001) and Tse and Tsui (2002) for further discussion).
The procedures proposed in this paper also involve the X1,t, X2,t and Y12,t

processes. However, these processes are obtained in a much more general
context not involving a parametric specification for the conditional standard
deviation σi,t for i = 1, 2. Engle (2002), Engle and Sheppard (2001) and Tse
and Tsui (2002) assume that σi,t follows a GARCH(1,1) model. We adopt
a purely data-driven specification for σi,t, and this has several advantages.
First this approach covers processes more general than the GARCH specifi-
cation some of which can account for asymmetries as well as jumps (given
the results in Foster and Nelson (1996), Andersen et al. (2001) and An-
dreou and Ghysels (2002a)). The purely data-driven first stage also has the
advantage that we do not potentially misspecify the parametric model for
volatility. Moreover, this approach may eliminate potential sources of mis-
specification avoid erroneous inference on the presence of structural breaks.
This is related to the second advantage of the method proposed in that it
yields a semi-parametric setup for the second stage of the test procedure that
also allows for general innovation distributions. The reason for focusing on
the normalized returns process, Xi,t, rather than ri,t or σi,t, in multivariate
GARCH type models is due to the fact that the former process is invariant
to certain structural breaks in the univariate dynamics and therefore enables
us to isolate breaks in the conditional covariance/co-movements from breaks
in the univariate volatility dynamics. We elaborate further on these points
later in sections 3 and 4.
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In the remainder of this subsection we will discuss only the basic under-
pinnings of filtering σi,t. The notation will be simplified here by dropping the
subscript i pertaining to a particular return series, i.e. instead of ri,t we will
simply write rt because we will adopt mainly a univariate framework. The
computation of rt/σt with data-driven σt is valid in a diffusion context as
well as various discrete time processes such as various ARCH type models
including GARCH, EGARCH, SV and other specifications. The setup is de-
liberately closely related to the work of Foster and Nelson (1996) on rolling
sample volatility estimators. Consider the following discrete time dynamics:

r(m),t = µ(m),tm
−1
+M(m),t −M(m),t−m ≡ µ(m),tm

−1
+∆(m)M(m),t (2.2)

which correspond to the so called Doob-Meyer decomposition of the m hori-
zon returns into a predictable component µ(m),t and a local martingale differ-
ence sequence. The decomposition is a natural starting point when returns
are generated by a standard diffusion process with stochastic volatility. The
decomposition in (2.2) is also the starting point for discrete time ARCH
type processes. Conditional expectations and variances with respect to the
(univariate) filtration {F(m),t} will be denoted as E(m),t(·) and V ar(m),t(·) re-
spectively, whereas unconditional moments follow a similar notation, E(m)(·)
and V ar(m)(·). Consequently:

V ar(m),t(r(m),t) ≡ E[(∆(m)M(m),t − µ(m),t)
2|F(m),t] = σ2

(m),tm
−1 (2.3)

where σ
2
(m),t measures the conditional variance per unit of time. We will

consider various data-driven estimators for σ2
(m),t which can generically be

written as:

σ̂
2
(m),t =

nL∑

τ=1

w(τ−t)(r(m),t+1−τ − µ̂(m),t)
2 (2.4)

where w(τ−t) is a weighting scheme, nL is the lag length of the rolling window
and µ̂(m),t is a (rolling sample) estimate of the drift. The optimal window
length and weights are discussed in Andreou and Ghysels (2002a) and applied
in the empirical section.

2.2 Multivariate factor volatility models

Before discussing the specifics of the tests and filters, it is worth elaborating
on the fact that the testing procedures are not only applicable in the context
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of DCC models despite the fact that our two-step procedure shares several
features with such models. We noted earlier that the first step is nonpara-
metric. This implies that we can cover a wider class of models than is allowed
for in parametric CCC and DCC settings. In particular, we can handle dif-
ferent types of multivariate GARCH models, involving common factor and
other specifications.

The commonality in volatility across markets has resulted in several spec-
ifications involving common factors. Diebold and Nerlove (1989), Engle
(1987), Engle et al. (1990), Harvey et al. (1994), Ng et al. (1992) are
some examples of alternative multivariate factor models of the ARCH or SV
type. Many of the parametric model specifications are either observationally
equivalent or share many common features. A nice illustration is the work of
Sentana (1998) who provides a formal nesting of the factor GARCH model
of Engle (1987) and the latent factor ARCH model of Diebold and Nerlove
(1989).

It will be useful to start with a BEKK representation of multivariate
ARCH models (see Engle and Kroner (1995)). Namely, the vector of returns
is assumed to be described as:

Rt| (Rt−p, p = 1, . . .) ∼ D(0,Ht) (2.5)

vech (Ht) = vech(Φ) +
q∑

s=1

Asvech(Rt−sR
′

t−s) +
q∑

r=1

Brvech(Ht−r)

where As and Br are square matrices of order n(n + 1)/2 and Φ is a vector

of the same order. It is worth noting that the matrix Ht comprises the con-

ditional variance and covariance specifications hij,t in the multivariate model

which are by definition different from the univariate conditional volatility

process denoted by σi,t. The general BEKK representation can be linked to
several classes of models that will be of specific interest for our analysis.
These are (1) the k-factor GARCH(p,q) and (2) the latent factor ARCH
model and (3) the diagonal GARCH model.

We will not examine the full vector Rt, instead we examine the compo-
nents separately, i.e. we look at the marginal processes ri,t for i = 1, . . . , n.
Nijman and Sentana (1996) and Meddahi and Renault (1996) provide formu-
las describing the volatility dynamics of linear combinations δRt implied by
(2.5). For example, in the case of Ht being a multivariate GARCH or com-
mon factor model, Nijman and Sentana (1996) describe the (weak) GARCH
implied univariate process for any linear combination, including δ equal to
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for instance the vector picking the first return, namely (1, 0, . . . , 0). Meddahi
and Renault (1996) provide similar results for stochastic volatility models.
We will not rely on these mappings. Instead we will adopt a reduced form
approach, allowing for the flexibility of leaving the parameters (2.5) unspec-
ified. While we give up efficiency of filtering we gain by being able to rely
on purely data-driven filters and simple statistical procedures. Moreover,
the sequential analysis adopted for detecting and dating the change-points
in section 3 is well-suited in this reduced form framework given the savings
in the degrees of freedom and related estimation complexities involved in
multivariate models. In the next subsection we digress further on the filters
which yield estimates for σi,t.

2.3 Transformations for asset returns using data-driven

volatility filters

The test statistics discussed in the next section are based on functions of
normalized returns computed as (r(m),t − µ̂(m),t)/σ̂(m),t, for some estimator

of µ̂(m),t and σ̂(m),t, i.e. some sampling frequency m and weighting scheme

w(τ−t) in (2.4). The empirical setting that will be used involves very short
spans of data with high frequency sampling. We can deal with the local drift
either by estimating it as a local average sum of returns or, following the
arguments in Merton (1980) among others, ignore any possible drift and set
it to zero, i.e. µ̂(m),t ≡ 0. For simplicity of our presentation, we will adopt
the latter, i.e. set the drift to zero.

The setup in (2.2) and (2.3) is the same as Foster and Nelson (1996) who
derive a continuous record asymptotic theory which assumes that a fixed span
of data is sampled at ever finer intervals. The basic intuition driving the re-
sults is that normalized returns, r(m),t/σ(m),t, over short intervals appear like
approximately i.i.d. with zero conditional mean and finite conditional vari-
ance and have regular tail behavior which make the application of Central
Limit Theorems possible. Foster and Nelson impose several fairly mild regu-
larity conditions such that the local behavior of the ratio r(m),t/σ(m),t becomes
approximately i.i.d. with fat tails (and eventually Gaussian for large m). In
their setup local cuts of the data exhibit a relatively stable variance, which is
why σ̂(m),t catches up with the latent true σ(m),t with judicious choices of the
weighting scheme and in particular the data window chosen to estimate the
local volatility. The tests allow for some local dependence in the data and
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do not rely on Normality of the ratio r(m),t/σ̂(m),t. The empirical evidence
of the Normality of r(m),t/σ̂(m),t is mixed at the daily level at least. Zhou
(1996) and Andersen et al. (2000) report near-normality for daily sampling
frequencies. We find that different classes of volatility filters yield different
distributional properties for the normalized returns process, X(m),t.

A number of alternative volatility filters, σ̂i,(m),t, are considered below
which differ in terms of the estimation method, sampling frequency and in-
formation set (further evaluated in Foster and Nelson, 1996, Andersen and
Bollerslev, 1998, Andersen et al., 2001, and Andreou and Ghysels, 2002a).
These data-driven variance filters belong to two classes of volatilities. First,
the interday volatilities are: (i) The Exponentially Weighted Moving Av-
erage Volatility defined following the industry standard introduced by J.P.
Morgan (see Riskmetrics Manual, 1995) as: σ̂RM,t = λσ̂RM,t−1 + (1− λ) r2

t
,

t = 1, ..., Tdays,where λ = 0.94 for daily data, rt is the daily return and
Tdays is the number of trading days. (ii) One-sided Rolling daily window
Volatility defined as: σ̂RV,t =

∑nL
j=1wjr

2
t+1−j , t = 1, ..., Tdays, where nL is

the lag length of the rolling window in days. When the weights wj are
equal to n−1L then one considers flat weights. In our simulations we will
consider nL = 26 and 52 days to conform with the optimality in Foster
and Nelson and the common practice of taking (roughly) one month worth
of data (see e.g. Schwert (1989) among others). These interday volatili-
ties are denoted as σ̂i,t where i = RM , RV 26, RV 52. The second class
of intraday volatility filters is based on the quadratic variation of returns
(see Andreou and Ghysels, 2002a for more details) and includes: (i) One-
day Quadratic Variation of the process also called Integrated Volatility (e.g.
Andersen and Bollerslev, 1998) is defined as the sum of squared log re-
turns r(m),t for different values of m, to produce the daily volatility measure:
σ̂QV 1,t =

∑m
j=1 r

2
(m),t+1−j/m, t = 1, ..., ndays, where for the 5-minute sampling

frequency the lag length is m = 288 for financial markets open 24 hours
per day (e.g. FX markets). (ii) One-day Historical Quadratic Variation (in-
troduced in Andreou and Ghysels, 2002a) defined as the sum of m rolling
QV 1 estimates: σ̂HQV 1,t = 1/m

∑m
j=1 σ̂QV 1,(m),t+1−j/m, t = 1, ..., Tdays. The

intraday volatilities are denoted as σ̂i,t where i = QV k,HQV k, for window
lengths k = 1, 2, 3, in the 5-minute sampling frequency case. For window
lengths k > 1 the intraday volatility filters (H)QV k are simple averages of
(H)QV 1 for k days. Table A1 (Appendix A) presents the window length
asymptotic efficiency equivalence results.
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3 Tests for structural breaks in co-movements

There is a substantial literature on testing for the presence of breaks in
i.i.d. processes and more recent work in the context of linearly dependent
stochastic processes (see for instance, Bai (1994, 1997), Bai and Perron
(1998) interalia). Nevertheless, high frequency financial asset returns se-
ries are strongly dependent processes satisfying β−mixing. Chen and Car-
rasco (2001) provide a comprehensive analysis of such univariate processes
and Bussama (2001), Chen and Hansen (2002) have shown that multivariate
ARCH and diffusion processes are also β-mixing. This result precludes the
application of many aforementioned tests for structural breaks that require
a much stronger mixing condition. Following Kokoszka and Leipus (1998,
2000) and Lavielle and Moulines (2000) we explore recent advances in the
theory of change-point estimation for strongly dependent processes. These
papers have shown the consistency of CUSUM and least squares type change-
point estimators, respectively, for detecting and dating change-points. The
tests are not model-specific and apply to a large class of weakly and strongly
dependent (e.g. ARCH and SV type) specifications. So far only limited sim-
ulation and empirical evidence is reported about these tests. Andreou and
Ghysels (2002b) enlarged the scope of applicability by suggesting several im-
provements that enhance the practical implementation of the proposed tests.
They also find via simulations that the VARHAC estimator proposed by den
Haan and Levin (1997) yields good properties for the CUSUM-type estimator
of Kokoszka and Leipus (2000).

The Lavielle and Moulines (2000) and Kokoszka and Leipus (2000) stud-
ies can handle univariate processes while here we investigate multivariate
processes via the two-step setup. It is demonstrated that the two-stage ap-
proach adopted here for multivariate models can be considered as a simple
reduced form and computationally efficient method for the detection of struc-
tural breaks tests in multivariate heteroskedastic settings. The procedures
proposed apply to the empirical process Y12,t := X1,tX2,t for pairs of assets,
appearing in (2.1), where Xi,t := ri,t/σi,t, i = 1, 2, is obtained via the appli-
cation of a data-driven filter described in the previous section. Note that in
this section we treat the case of a generic filter without elaborating on the
specifics of the filter. This process is invariant to change-points in the univari-
ate GARCH parameters and feeds into the second step that tests for breaks
in the conditional covariance Y12,t. The β-mixing property of multivariate
GARCH and diffusion processes (Bussamma, 2001, Chen and Hansen, 2002)
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implies that Y12,t is β-mixing too. This is valid for the M-GARCH with
dynamic conditional correlation specifications. For instance, according to
the M-GARCH-DCC (Engle, 2002) Y12,t has a GARCH specification which
implies β-mixing. The exemption being the M-GARCH-CCC according to
which Y12,t is assumed to be constant. Last but not least, we note that in
dynamic correlation M-GARCH models the quadratic transformations such
as |Y12,t|

d
d = 1, 2 are also β-mixing since they are measurable functions of

mixing processes, which are β-mixing and of the same size (see White (1984,
Theorem 3.49 and Proposition 3.23)).

The analysis focuses on the bivariate case for ease of exposition. This
two-step approach can be easily extended to the multivariate n number of
assets in the M-GARCH framework for which n(n − 1)/2 cross-covariances,
Yij,t, would present the processes for testing the change-point hypothesis in
pairs of assets. Netherless, it is worth noting that when n gets large this
framework becomes useful if we impose some additional restrictions. For
instance, in the M-GARCH-CCC model when n gets large we can test the
null hypothesis of joint homogeneity in the correlation coefficients in the pairs
of normalized returns, ρij, versus the alternative that there is an unknown
change-point in the any of these cross-correlations. A similar approach for
n−dependent processes can be found in Horváth et al. (1999) which can be
adapted to the conditional covariances of an M-GARCH-CCC model.

In the remainder of this section we discuss the specifics of the testing
procedures.

3.1 CUSUM type tests

Without an explicit specification of a multivariate ARCH, the tests discussed
in this section will examine whether there is evidence of structural breaks in
the data generating process of Y12,t. To test for breaks Kokoszka and Leipus
(1998, 2000) consider the following process:

UN(k) =


1/

√
N

k∑
j=1

Zj − k/(N
√
N)

N∑
j=1

Zj


 (3.1)

for 0 < k < N where Zt = |Y12,t|
d
d = 1, 2 in (3.1) represents the absolute and

squared normalized returns in an ARCH(∞) process. When the conditional
covariance process exhibits an ARCH-type specification, like in most dynamic
conditional correlation M-GARCH models, we need not specify the explicit
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functional form of Y12,t. Kokoszka and Leipus (1998, 2000) assume that
ARCH(∞) processes are (i) stationary with short memory i.e. the coefficients
decay exponentially fast, and (ii) the errors are not assumed Gaussian but
merely that they have a finite fourth moment. Horváth (1997) and Kokoszka
and Leipus (1998) show that (3.1) holds if now the process Zt := Y12,t is

linearly dependent. The above moment conditions need also apply to M-

GARCH processes. The CUSUM type estimators are defined as:

k̂ = min{k : |UN (k)| = max
1≤j≤N

|UN(j)|} (3.2)

The estimate k̂ is the point at which there is maximal sample evidence for
a break in the Zt process. To decide whether there is actually a break, one
has also to derive the asymptotic distribution of sup

0≤k≤N UN (k) or related

processes such as
∫
1

0
U

2

N
(t)dt. Moreover, in the presence of a single break k̂ is

a consistent estimator of k∗. Under the null hypothesis of no break:

UN (k)→D[0,1] σZB(k) (3.3)

where B(k) is a Brownian bridge and σ
2
Z =

∑
∞

j=−∞ Cov(Zj, Z0). Conse-

quently, using an estimator σ̂Z, one can establish that under the null:

sup{|UN (k)|}/σ̂Z →D[0,1] sup{B(k) : kε[0, 1]} (3.4)

which establishes a Kolmogorov-Smirnov type asymptotic distribution. Fur-
ther details about the computation of the statistics and its application to
multiple breaks in a univariate GARCH context can be found in Andreou
and Ghysels (2002b).

3.2 Least Squares type tests

Bai and Perron (1998) have proposed a least squares estimation procedure to
determine the number and location of breaks in the mean of linear processes
with weakly dependent errors. The key result in Bai (1994, 1997), Bai and
Perron (1998) is the use of a Hájek-Rényi inequality to establish the asymp-
totic distribution of the test procedure. Recent work by Lavielle andMoulines
(2000) has greatly increased the scope of testing for multiple breaks. They
obtain similar inequality results for weakly as well as strongly dependent
processes. The number of breaks is estimated via a penalized least-squares
approach similar to Yao (1988). In particular, Lavielle and Moulines (2000)
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show that an appropriately modified version of the Schwarz criterion yields a
consistent estimator of the number of change-points. In the present analysis
we apply this test to the following generic model:

Y12,t = µ
∗

k
+ εt t∗

k−1
≤ t ≤ t∗

k
1 ≤ k ≤ r (3.5)

where t∗
0
= 0 and t∗r+1 = T, the sample size. The indices of the breakpoint

and mean values µ∗

k, k = 1, . . . , r are unknown. It is worth recalling that
Y12,t is a generic stand-in process. In our application, equation (3.5) applies
to the cross-products of normalized returns for examining the change-point
hypothesis in the conditional covariance of M-GARCH-CCC and -DCC type
models. For dynamic conditional correlation models (3.5) can be augmented
to

Y12,t = θ12 + η12Y12,t−1 + v12,t. (3.6)

When the M-GARCH conditional correlation is assumed constant or when
dealing with a single observed factor model (e.g. the market CAPM) with
constant correlation, another auxiliary equation that may yield power for
testing the structural breaks hypothesis is the regression between normalized
returns e.g. X1,t = θ′

12
+ η′

12
X2,t + v12,t. Note that this regression is not

strictly equivalent to (3.5) for the conditional covariance that is derived from
the M-GARCH-CCC reduction approach. Nevertheless, it can be considered
as another auxiliary regression that relates to the conditional co-movements
between assets in factor models as well as most conditional mean asset pricing
theories. A useful example of this approach can be considered in the context
of the one factor model that is used to model the market CAPM model. Let
rM,t and ri,t be the demeaned returns on the market (indexed by M) and on
the individual firm stock i at time t :

rM,t = σM,tuM,t (3.7)

ri,t = βi,trM,t + σi,tui,t (3.8)

where uM,t and ui,t are uncorrelated i.i.d.(0, 1) processes, σM,t, σi,t and βi,t

are, respectively, the conditional variance of rM,t, the firm specific variance
of ri,t, and the conditional beta of ri,t with respect to rM,t. Beta is expressed
in the following way:

βi,t =
Et−1[ri,trM,t]

Et−1[r2M,t]
:=

σiM,t

σ2

M,t

(3.9)
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In the market CAPM equation (3.8), we divide by the idiosyncratic risk, σi,t,

and write explicitly beta to obtain:

ri,t

σi,t

=

σiM,t

σM,tσi,t

rM,t

σM,t

+
σi,tzi,t

σi,t

If we define the normalized returns by Xi,t and XM,t, then the following
regression type model arises:

Xi,t =
σiM,t

σM,tσi,t

XM,t + zi,t

or
Xi,t = ρiM,tXM,t + zi,t (3.10)

where ρiM,t represents the conditional correlation between the returns of the
two assets. Two interesting cases arise in the context of (3.10). If ρiM,t = ρiM
then constant conditional correlation implies the process (3.10) is φ−mixing.
If ρiM,t is a dynamic conditional correlation then (3.10) is β−mixing. In
both cases the Lavielle and Moulines test can be applied. Note that the
above example is restricted to observable factors and can be extended to
n risky assets to obtain n regressions of normalized returns with the risk
adjusted market portfolio. The change-point could be performed to each
equation (3.10) to assess the stability of the co-movements of risky stocks
with the market portfolio.

The Lavielle and Moulines tests are based on the following least-squares
computation:

QT (t) = min
µ∗
k
,k=1,...,r

r+1∑

k=1

tk∑

t=tk−1+1

(Y12,k − µk)
2 (3.11)

Estimation of the number of break points involves the use of the Schwarz
or Bayesian information criterion (BIC) and hence a penalized criterion
QT (t) + βT r, where βT r is a penalty function to avoid over-segmentation
with r being the number of changes and {βT } a decreasing sequence of pos-
itive real numbers. We examine the properties of this test using both the
BIC and the information criterion proposed in Liu et al. (1997) (denoted as
LWZ). It is shown under mild conditions that the change-point estimator is
strongly consistent with T rate of convergence.
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4 Monte Carlo Design and Results

In this section we discuss the Monte Carlo study which examines the proper-
ties of normalized returns in univariate and multivariate heteroskedastic pa-
rameterizations as well as the properties of the Kokoszka and Leipus (1998,
2000) and Lavielle and Moulines (2000) change-point tests applied in a mul-
tivariate heteroskedastic setting. The design and results complement the
findings of Andreou and Ghysels (2002a,b) who propose extensions of the
continuous record asymptotic analysis for rolling sample variance estimators
and examine the aforementioned tests for testing breaks in the dynamics of
univariate volatility models.

4.1 Simulation design

The simulated returns processes are generated from the following two types
of DGPs: (i) a univariate GARCH process with Normal and Student’s t

errors, and (ii) a multivariate GARCH process with constant correlation
(M-GARCH-CCC) (Bollerslev, 1990) as well as dynamic correlation such as
the vech diagonal specification proposed in Bollerslev, Engle and Wooldridge
(1988) (M-GARCH-VDC). The choice of the M-GARCH-CCC andM-GARCH-
VDC models is mainly due to their simplicity and parsimony for simulation
and parameterization purposes. Moreover, the former multivariate design is
most closely related to the univariate GARCH for which the Kokoszka and
Leipus (2000) test has been derived. More specifically, the DGPs examined
are:
(i) Univariate GARCH process:

rq,t = uq,t

√
σq,t, σq,t = ωq + aqu

2

q,t−1 + βqσq,t−1, (4.1)

where rq,t is the returns process generated by the product of the error uq,t

which is i.i.d.(0,1) with Normal or Student’s t distribution function and the
volatility process, σq,t that has a GARCH(1,1) specification. The process
without change points is denoted by q = 0 whereas a break in any of the
parameters of the process is symbolized by q = 1 to denote the null and the
alternative hypotheses, respectively, outlined below.
(ii) Multivariate GARCH process for a pair of assets (1, 2):

r1,q,t = u1,q,t

√
h11,q,t + u2,q,th12,q,t (4.2)

r2,q,t = u2,q,t

√
h22,q,t + u1,q,th12,q,t, t = 1, ..., T and q = 0, 1.
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where r1,q,t and r2,q,t are the returns processes that are generated by u1,q,t

and u2,q,t i.i.d.(0, 1) processes and M-GARCH conditional variances:

h11,q,t = ω11,q + a11,qu
2

1,q,t−1 + β
11,qh11,q,t−1 (4.3)

h22,q,t = ω22,q + a22,qu
2

2,q,t−1 + β
22,qh22,q,t−1

The conditional covariance in the M-GARCH-CCC (Bollerslev, 1990) is given
by:

h12,q,t = ρ12,q

√
h11,q,th22,q,t. (4.4)

Similarly the conditional covariance in the M-GARCH-VDC (Bollerslev et
al., 1988) is given by:

h12,q,t = ω12,q + a12,qu1,q,t−1u2,q,t−1 + β
12,qh12,q,t−1. (4.5)

The models used in the simulation study are representative of financial mar-
kets data with a set of parameters that capture a range of degrees of volatility
persistence measured by δ = a+ β. The vector parameters (ω, a, β) in (4.1)
describes the following Data Generating Processes: DGP1 has (0.4,0.1, 0.5)
and DGP2 has (0.1, 0.1,0.7) and are characterized by low and high volatil-
ity persistence, respectively. In order to control the multivariate simulation
experiment the volatility processes in the M-GARCH equations in (4.3) are
assumed to have the same parameterization. The sample sizes of N = 500

and 1000 are chosen so as to examine not only the asymptotic behavior but
also the small sample properties of the tests for realistic samples in financial
time series. The small sample features are particularly relevant for the se-
quential application of the tests in subsamples for detecting multiple breaks
or repeated application involving the combinations of pairs of normalized
returns. For simplicity and conciseness the simulation design is restricted to
the bivariate case whereas it can be extended to n > 2 assets and the tests
are applied to the pair combinations just as in the bivariate model.

The models in (i) and (ii) without breaks (q = 0) denote the processes
under the null hypothesis for which the simulation design provides evidence
for the size of the K&L test. The simulation results are discussed in the
section that follows. Under the alternative hypothesis the returns process is
assumed to exhibit breaks. Four cases are considered to evaluate the power of
the tests. The simulation study focuses on the single change-point hypothesis
and can be extended to the multiple breaks framework (see for instance,
Andreou and Ghysels, 2002b). In the context of (4.1) we study breaks in
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the conditional variance hq,t which can also be thought as permanent regime
shifts in volatility at change points πN (π = .3, .5, .7). Such breaks may have
the following sources: HA

1
: A change in the volatility dynamics, βq. HB

1
:

A change in the intercept, ωq. H
C
1
: A change in the conditional correlation,

given by ρ12,q in (4.4) or HD
1

: ω12,q in (4.5), and HE
1
: β12,q in (4.5).

The simulation investigation is organized as follows. First we examine
some of the probabilistic properties of the normalized returns series generated
from univariate and multivariate GARCH models. Second we investigate the
performance of the K&L and L&M tests using a univariate and multivariate
normalized returns framework. The univariate normalized returns represents
the first stage of estimation of M-GARCH models proposed in Engle (2002),
Tse and Tsui (2002). We show that this stage is invariant to breaks that
may have occurred in either HA

1
,HB

1
,HC

1
. In the second stage we test for

breaks in the cross-product of normalized returns or the regression of nor-
malized returns using the K&L and L&M tests. We find that the normalized
returns transformation and its cross-product, Xi,t and Y12,t, are invariant to
breaks that occur in the univariate GARCH parameters (HA

1
,HB

1
) tested

by K&L and L&M whereas this procedure has power to detect large breaks
that occur in the conditional covariance, Y12,t, tested by HC

1
or HD

1
and HE

1
.

The simulation as well as empirical analysis is performed using the GAUSS
programming language.

4.2 The standardized returns processes

The statistical properties of daily returns standardized by the volatility filters
outlined in section (2.3) are discussed in the context of univariate and bivari-
ate dynamic heteroskedastic structures described in the previous subsection.
For the intraday volatility filters and for the purpose of simulation and para-
meter selection we take the univariate representation of each GARCH process
for alternative sampling frequencies following Drost andWerker (1996, Corol-
lary 3.2) who derive the mappings between GARCH parameters correspond-
ing to processes with r(m),t sampled with different values of m. Obviously the
Drost and Werker formulae do not apply in multivariate settings, but they
are used here for the marginal process, producing potentially an approxi-
mation error as the marginal processes are not exactly weak GARCH(1,1).
Using the estimated GARCH parameters for daily data with m = 1, one
can compute the corresponding parameters ω(m), α(m), β(m), for any other
frequency m. The models used for the simulation study are representative

17



of the FX financial markets, popular candidates of which are taken to be
returns on DM/US$, YN/US$ exchange rates. We take the daily results of
Andersen and Bollerslev (1998) and compute the implied GARCH(1,1) para-
meters ω(m), α(m) and β(m) for 1-minute and 5-minutes frequency, m = 1440
and 288, respectively, (reported in Appendix A, Table A2) using the software
available from Drost and Nijman (1993).

The normalized returns transformation is the process of interest follow-
ing the discussion in section 2. According to the univariate GARCH process,
(4.1), the standardized returns process Xi,(m) := ri,(m),t/σi,(m),t is by defini-
tion i.i.d.(0, 1). The ‘true’ standardized returns of the univariate GARCH is
given for the 1-minute sampling frequency and the corresponding parameters
presented in Table A2 (Appendix A). The quadratic variation intraday esti-
mators defined in section 2.3 are specified by aggregating the ‘true’ squared
returns process for 5-, 30- and 60-minutes sampling frequency. The remaining
volatility filters in section 2.3 are the spot volatilities which are specified here
using daily frequencies. Evaluation of how well the returns standardized by
the data-driven volatility filters approximate the true parametric structure is
based on the contemporaneous Mean Square and Absolute Errors (MSE and
MAE) using as benchmark the MSE (and MAE) of that derived for XQV 1,t.
We also evaluate the statistical properties of these ratio transformations by
testing their Normality assumption using the Jarque and Bera (1980) test as
well as whether they adequately capture the nonlinear dynamics by testing
for any remaining ARCH (Engle, 1982) in Xi,t. According to the bivariate
GARCH process with constant or dynamic correlation, (4.4) or (4.5), respec-
tively, the normalized returns is expected to be a dependent process. We
note that one can generalize the above simulation design to a multivariate
n-dimensional model as well as augment it for jumps.

The simulation results in Table 1 summarize the statistical properties of
the daily returns standardized by the alternative volatility filters defined in
section 2.3. The simulated processes refer to a bivariate GARCH-CCC with
ρ12 = 0 and 0.5 (where the former case reduces to a univariate GARCH).
The first panel of Table 1 presents the relative MSEs (MAEs) ratios vis-a-
vis the MSE (MAE) of XQV 1,t for assessing the relative efficiency of each
data-driven standardized returns compared with the simulated ‘true’ return-
to-volatility ratio. These results suggest that the lowest MSE (MAE) ratios
are attributed to XRV 26,t, XQV 2,t and XHQV 1,t for the three different cate-
gories of data-driven volatility filters in section 2.3. These results are valid
for both GARCH and M-GARCH-CCC processes, Normal and Student’s t

18



errors and for both measures of efficiency. They are also consistent with the
extensive simulation evidence in Andreou and Ghysels (2002a). The statis-
tical properties of the returns-to-volatility simulated series are also assessed
with respect to their distributional and temporal dependence dynamic prop-
erties. The Normality test results in the second panel of Table 1 show that
under the Normal-GARCH, there is general simulation evidence in favor of
the Normality hypothesis for all standardized returns series (at the 5% signif-
icance level) except for XRM,t. However, under the more realistic assumption
of a t-GARCH, arising from the heavy-tailed high-frequency data, we do not
find supportive evidence of the Normality hypothesis in XRM,t, XRV 52,t and
XHQV 3,t. It is worth emphasizing that the returns which exhibit heavy tails
are standardized by the three different volatility filters all of which share some
of the optimality features discussed in Foster and Nelson (1996) and Andreou
and Ghysels (2002a), namely exponential weights, rolling estimation and op-
timal window length. Finally, in the last panel of Table 1 we present the
simulation results from testing any remaining ARCH effects in normalized
returns. We find evidence in favor of no remaining second-order dynamics in
all risk-adjusted returns by interday and intraday volatility filters, under both
Normal and Student’s t univariate GARCH processes. The results present
evidence that univariate returns process normalized by optimal volatility fil-
ters yield an approximately independent series with a distribution that has
different tail behavior depending on the standardizing filter employed. If the
process is generated by an M-GARCH process the normalized returns process
is expected to exhibit second-order dependence and fat tails due to remaining
heteroskedasticity. We find that Xi,t are non-Gaussian and approximately in-
dependent processes for univariate GARCHmodels. Hence the cross product
process Y12,t = X1,tX2,t is an independent process for univariate GARCH and
M-GARCH-CCC processes whereas it exhibits nonlinear dependence for M-
GARCH-VDC models. Generally the brief simulations support the assump-
tions required for the application of change-point tests discussed in section
3.

4.3 Simulation results of change-point tests

The theoretical and simulation evidence regarding the probabilistic proper-
ties of normalized returns satisfy the conditions of the Kokoszka and Leipus
(2000) and Lavielle and Moulines (2000) tests discussed in section 3. Hence
this section examines the properties of these tests for change-points in the
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conditional covariance of asset returns generated by M-GARCH processes
with constant and dynamic conditional correlation. Note that the simula-
tions discussion focuses on N = 1000 and π = 0.5 for conciseness purposes.
Similar results are obtained for π = 0.3, 0.7 and N = 500, expect that the
tests have less power in detecting early change points for the smaller sample.

In section 2 we discuss the reduced form approach adopted for M-GARCH
models. The first stage involves the univariate specification and estimation
of conditional variance dynamics which yields the normalized returns process
for each asset,X1,t andX2,t. The second stage involves the specification of the
conditional covariance dynamics. For M-GARCH processes the conditional
covariance is specified as the cross-product of pairs of normalized returns for
assets 1 and 2 given by Y12,t = X1,tX2,t. The equations for Y12,t which we use
for change-point testing are given by:

Y12,t = ρ12 + u12,t (4.6)

and
Y12,t = θ12 + η

12
Y12,t−1 + v12,t (4.7)

Equations (4.6) and (4.7) represent the constant and dynamic conditional
correlation of M-GARCH-CCC and M-GARCH-VDC models, respectively.
The AR (4.7) of the conditional correlation as well its ARMA generalizations
have been discussed in Engle (2002) and Tse and Tsui (2002) who propose
that it can be used for the specification and estimation of a new class of
M-GARCH models with dynamic conditional correlation. Similarly, (4.7)
has been used in Tse (2000) as the auxiliary equation for testing the null
hypothesis of constant conditional correlation (η

12
= 0) implied by an M-

GARCH-CCC.
The simulation results regarding the properties of change-point tests com-

mence with the evaluation of the Kokoszka and Leipus (K&L) test for the
M-GARCH-CCC. These results are reported in Table 2a. First we examine
the change-point hypotheses in the first stage of specification and estima-
tion which involves the univariate process of normalized returns, say X1,t =

r1,t/σ̂1,t using two representative spot volatility filters to obtain XRV 26,t and

XRM,t. Once more for conciseness purposes we do not report all the volatility

filters for standardizing the returns process. For the change-point simulation

analysis we focus on the XRV 26,t and XRM,t series which are applicable in a

broader sense given their daily sampling frequency as well as the relation-

ship of the RiskMetricks with IGARCH models. Note that the empirical
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analysis considers all volatility filters discussed in section 2.3. The simulation

results in Table 2a show that the K&L test has good size properties forXRM,t

and XRV 26,t and appears to be robust to any change-points in the univariate

GARCH parameters or the correlation coefficient, as shown by any of the

alternative hypotheses, HA
1
,HB

1
,HC

1
. This result is due to the multiplica-

tive structure of GARCH type models according to which any change-point

in the parameters of hi,t or ρ
12,t

is offset by the corresponding change in

ri,t so that the ratio ri,t/σ̂i,t is homogeneous. The second stage of the M-

GARCH parameterization involves the cross-product of normalized returns.

First we study the K&L test properties for Y12,RV 26,t = X1,RV 26,t ∗X2,RV 26,t

and Y12,RM,t = X1,RM,t ∗ X2,RM,t. The remaining results in Table 2a show

that the K&L has good size properties for the conditional covariance in-

volving RV 26 as opposed to RM which yields an undersized K&L test in

the Y12,RM,t case. The exemption being σ
RM
Y12

which represents the Risk-
Metrics series of the cross-product. This simulation evidence also relates to
the Foster and Nelson (1996) arguments regarding the efficiency of expo-
nential weights. Given the alternative hypotheses of change-points in the
GARCH parameters, HA

1
and HB

1
, the cross-products of normalized returns,

Y12,RV 26,t, Y12,RM,t, σ
RM
Y12

, or their quadratic transformations yield no power.
Summarizing, the K&L test simulation results show that the normalized re-
turns series or the cross-product of such series are found to be robust to
change-points in the univariate GARCH parameters. The last panel of Table
2 shows that the K&L test applied to Y12,t is able to detect large change-
points in the correlation parameter ρ

12
of the M-GARCH-CCC model. Note

that the linear and quadratic (rather than absolute) transformation of Y12,t
yield more power. In Table 2b we also examine the properties of the K&L
test in the presence of the M-GARCH-VDC model and find it has less power
in detecting change-points in the dynamics of conditional covariance (shown
by HD

1
and HE

1
) as opposed to the M-GARCH-CCC (HC

1
) case. The Risk-

Metrics of normalized returns, σRMY12 , turns out to be the transformation with
the highest power especially in detecting large drops in the dynamics of the
conditional covariance parameter. Recall that the test is undersized for the
cross-product of normalized returns and is robust to breaks in the univariate
GARCH, HA

1
and HB

1
.

The change-point hypothesis in the conditional covariance is also exam-
ined using the Lavielle and Moulines (L&M) test. Tables 3a and 3b report
simulation evidence regarding the properties of the Lavielle and Moulines
(L&M) in detecting relatively large breaks in the cross product of normal-
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ized returns using both M-GARCH-CCC and M-GARCH-VDC simulated
processes. These Tables report the frequency distribution of the number of
breaks. The highlighted numbers refer to the ‘true’ simulated number of
breaks.1 The results in Table 3a show that the L&M using both information
criteria, the BIC and LWZ, have very good size properties but the former cri-
terion yields better power except for small change-points. It is also interesting
to note that the BIC criterion performs better for detecting downward rather
than upward shifts in the ρ

12
which is useful given the importance associated

with downside risk in financial markets. The simulations also show that the
tests are relatively more powerful in detecting breaks in the co-movements of
M-GARCH-CCC rather in the -VDC processes. An explanation for the poor
results in the latter process (shown in Table 3b) may be the static instead of
the dynamic auxiliary regression for Y12,t. Tables 4a and 4b also apply the
L&M to the least squares regression of pairs of normalized returns:

X1,t = θ′

12
+ η′

12
X2,t + v12,t (4.8)

which is valid for the constant conditional correlation models. The results
show that both information criteria, the BIC and LWZ, have very good size
properties. In evaluating the power properties of the L&M test we could
go directly to the last panel of Table 5a to examine HC

1
: a change in ρ

12
.

The highlighted results show that the BIC yields more power than the LWZ
criterion for the L&M test which detects breaks in both directions and DGPs
except when those are small in size (e.g. a 0.1 parameter change). The results
regarding the remaining alternative hypotheses (HA

1
and HB

1
) show that the

L&M test also detects breaks in the bivariate relationship of normalized re-
turns when the source of these change-points rests in the univariate GARCH
dynamics rather than in the co-movements. The size of such change-points
plays an important role in that large changes (e.g. at least a 50% parameter
increase) can be detected by the L&M test. The above results also hold if
the simulated process is an M-GARCH-VDC shown in Table 5b, except that
the size of the change-point needs to be even larger in either the conditional
variance or covariance dynamics for the test to exhibit power. It is also in-
teresting to note that in comparing the normalizing volatility filters we find
that the regression involving XRM,t yields more power in detecting change-
points in the conditional covariance of the M-GARCH-VDC whereas for the
M-GARCH-CCC both XRM,t and XRV 26,t yield similar power properties.

1The analysis refers to a single break but can be extended to multiple breaks as dis-
cussed in Andreou and Ghysels (2002b) univariate GARCH framework.

22



The brief simulation design for the properties of the K&L and L&M

tests presents the following results: First, the K&L CUSUM and L&M least

squares tests applied to X1,t,X2,t and Y12,t have power in detecting large

change-points only in the conditional covariance, Y12,t, of M-GARCH-CCC

and less so for VDCmodels. It has no power in detecting change-points in the

univariate GARCH parameters. Hence, the simulation study recommends

that if there is a change-point in the conditional covariance dynamics of

financial asset returns, the cross-product of normalized returns yields not

only a method for identification of the source of the break but also power in

detecting the break. In contrast, the univariate normalized returns, Xi,t, are

invariant to change-points. The returns process |ri,t|
d
, d = 1, 2 has power in

detecting change-points in the univariate GARCH parameters but not in the

conditional covariance process. Finally, the regression of pairs of normalized

returns in the L&M test detects large breaks in any of the M-GARCH-CCC

or -VDC parameters. Hence the K&L and L&M tests could be applied to

the processes ri,t,Xi,t,Yij,t (and their transformations) in a complementary
approach to identify the source of change-point.

5 Empirical Analysis

5.1 Co-movements of FX normalized returns

The empirical section of the paper investigates the bivariate relationship be-
tween the daily YN/US$ and DM/US$ risk adjusted returns over a decade
and tests for structural breaks in their co-movements. The empirical re-
sults complement the Monte Carlo analysis by examining further the sto-
chastic properties of risk-adjusted FX returns and investigate the presence of
structural breaks. The discussion is organized as follows. First, we test the
hypotheses of Normality and independence for all YN/US$ and DM/US$
standardized returns as well as the statistical adequacy of their regression
representation. Second, we examine the stability of this bivariate relation-
ship by testing for change-points using the Kokoszka and Leipus (2000),
Horváth (1997) as well and Lavielle and Moulines (2000) tests which are
valid for heavy tailed as well as weakly and strongly dependent processes.
The timing and numbers of breaks are also estimated. The data source is
Olsen and Associates. The original sample for a decade, from 1/12/1986 to
30/11/1996, is 1,052,064 five-minute return observations (2,653 days · 288
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five-minute intervals per day). The returns for some days were removed from
the sample to avoid having regular and predictable market closures which
affect the characterization of the volatility dynamics. A description of the
data removed is found in Andersen et al. (2001). The final sample includes
705,024 five-minute returns reflecting 2,448 trading days.

The statistical properties of daily returns normalized by a number of
volatility filters are examined for the two FX series. First we focus on the
temporal dependence and distributional properties of normalized returns. It
is a well documented stylized fact that daily asset returns are character-
ized by a martingale difference with second-order temporal dynamics and a
distribution that exhibits heavy-tails. Under the assumption that returns
are described by parametric models such as univariate GARCH or SV it
would be interesting to examine whether these purely data-driven volatility
filters adequately capture the second-order dynamics of asset returns so as to
yield standardized returns series that have no remaining nonlinear dynamics.
This is examined by testing the hypothesis of ARCH effects in normalized
returns. These empirical results are reported in Table 5 for the YN/US$
and DM/US$ which show two interesting features. First, for the 5-minute
sampling frequency there are no remaining ARCH effects in any of the stan-
dardized returns series which implies that all volatility filters for both FX
series appear equally efficient in capturing the non-linear dynamics. The sec-
ond and most important finding is that this result does not extend to lower
intraday sampling frequencies such as 30-minutes as shown by the remaining
results in the same tables. Note that the same results applies to the 60-minute
frequency filters which are not reported in the tables merely for conciseness
purposes. The presence of ARCH effects in most of the lower frequency nor-
malized returns suggests that the volatility filter and in particular its window
length and estimation method are important in yielding a normalized returns
process that captures all the nonlinear dynamics. The continuous record as-
ymptotic analysis for the efficiency of rolling volatility filters in Foster and
Nelson (1996) yields the optimal window length for different intraday sam-
pling frequencies as discussed in Andreou and Ghysels (2002a) summarized
in section 4.2 and Table A1. These theoretical asymptotic predictions of
efficiency gain empirical support in Table 5 for the 30-minute sampling fre-
quencies and both FX series. In particular, we find that the normalized
returns based on rolling intraday volatility filters given by XHQV i,t, i = k, �,

where k = 4, 8 and � = 6, 12 days for the 30- and 60-minutes frequencies,
respectively, capture the second-order dynamics exhibited by the FX returns
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at the 5% significance level. The spot volatility filters XRM,t, XRV 26,t and
XRV 52,t present mixed empirical evidence regarding the nonlinear temporal
dependence at the 5% significance level. Yet at the 10% level the first two
filters provide support for the null of no ARCH. Similar mixed results are
obtained in Table 6 regarding the linear temporal dynamics for FX returns.
Summarizing, the empirical results in Tables 5 and 6 show that the tem-
poral dependence properties of normalized returns depend on the window
length and estimation method of the volatility filter for intraday sampling
frequencies. The normalized returns series XHQV i,t, i = k, �, where k = 4,8

and � = 6, 12 days, for 30- and 60-minutes, respectively, present empiri-
cal support for no remaining linear or nonlinear memory especially for the
YN/US$ normalized returns. The nonlinear and linear dependence results for
spot volatilities and XQV 1,k,�, especially for the DM/US$, provide evidence
of weak and strong temporal dependence.

The distributional properties of normalized returns are assessed in Table
7 for the YN/US$ and DM/US$. Both the Jarque and Bera (1980) and
Anderson and Darling (1954) test results provide no empirical support of
the Normality hypothesis (at the 10% significance level) for any of the daily
standardized returns series, mainly due to excess kurtosis in both the spot
volatility (SV ) normalized returns, XSV,t, as well as the X(H)QV,t series. The
exception to this result isXQV 1,t which appears to support the Normality hy-
pothesis only for the 5-minute sampling frequency. Nevertheless at the lower
sampling frequencies XQV 1,t is also non-Normal. At the 5-minute sampling
frequency the sample skewness and kurtosis coefficients suggest that the em-
pirical distributions for all standardized returns are leptokurtic except for
XQV 1,t which actually appears to be platykurtic with sample kurtosis coef-
ficient below 3 for all intraday frequencies. Moreover, it is interesting to
note that a longer window length beyond one day in QV filters as well as
rolling instead of block sampling estimation methods yield excess kurtosis
in the empirical distribution. A graphical representation of the non-Normal
behavior of standardized returns is also presented in the Normal probability
plots in Figures 1-4 for the 30-minute sampling frequency case. In Figure
1 we present the daily (unstandardized) YN/US$ returns based on the nor-
malized returns using the Normal GARCH estimates, one of the popular
parametric estimates of volatility. The plots (as well as the accompanying
Anderson-Darling (AD) statistics) show that both series empirically invali-
date the Normality assumption. Similar behavior is presented by the spot
volatility normalized returns in Figure 2. The plots in Figure 3 show the
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returns normalized by the quadratic variation filters yield less heavy tails
than the corresponding unstandardized returns. Nevertheless, in all cases
except XQV 1,t the AD test results suggest lack of fit of the empirical distri-
bution due to heavy tails which increase with the volatility window length.
It is also interesting to compare Figures 3 and 4 and observe that XQV,t

and XHQV,t, respectively, produce different tail behavior compared to the
benchmark of unstandardized returns. In particular, XHQV,t exhibit more
peakness than the XQV,t or the returns process. This result is also verified by
the nonparametric kernel estimates (which are not presented mainly for con-
ciseness). Using the kernel estimates for two benchmark cases, the simulated
Normal i.i.d. process and the normalized returns by the GARCH estimates,
the remaining kernels for standardized returns by data-driven volatility fil-
ters suggest the following stylized facts. The spot volatility filters produce
standardized returns very similar to those of the GARCH filter. In contrast,
the quadratic volatility filters yield normalized returns that are neither close
to the Normal nor the XGARCH,t benchmarks. The XQV,t filters have less
heavy tails and appear closer to the Normal except that they are relatively
platykurtic. In contrast, XHQV,t yield an empirical distribution which has
similar tail behavior to XGARCH,t, but it is nonetheless more peaked, with a
higher concentration of observations in the middle. Last but not least, we
note that the rolling volatility method for both spot and integrated volatil-
ities yield normalized returns that exhibit some skewness effects as opposed
to the block sample estimation of the QV filters. It is worth noting that the
daily and most intraday volatility filters result in non-Normality due to both
excess kurtosis and in most cases asymmetry. This result may be due to an
underlying non-Normal distribution and/or the presence of jumps and breaks
in the risk adjusted returns process. Indeed the simulation results in Table
1 are generally in favor of the Normality hypothesis for a Normal GARCH
process.

Summarizing, the univariate empirical analysis of the standardized re-
turns presents the following four results. First, the efficiency of volatility
filters plays an important role in terms of capturing all the second-order
dynamics exhibited by returns. This efficiency depends on the sampling fre-
quency, window length and estimation method. The combination of rolling
estimation and optimal window produces nearly independent standardized
FX returns series. Second, temporal aggregation of intraday returns requires
a longer lag of volatility so as to capture the dependence in normalized re-
turns and the empirical findings support the continuous record asymptotics
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of the efficiency of volatility filters. Third, the empirical tail behavior implied
by XQV,t and XHQV,t differ and the latter are found to be relatively more lep-
tokurtic. Moreover, as the window length increases for both QV and SV

filters, the distribution of the respective standardized returns becomes more
leptokurtic.

The above results suggest that the ratio transformation of daily returns-
to-volatility based on data-driven volatility filters can yield a process with
a relatively simple statistical structure. This transformation relates to em-
pirical measures of investment performance such as the historical Sharpe
ratio. Moreover, as discussed in section 2 it can be considered as a useful
nonparametric two stage approach which reduces the dimensionality of a mul-
tivariate structure for asset returns and volatility. Similarly, Engle (2002),
Tse and Tsui (2002) adopt this approach for specification and estimation of
M-GARCH models. In this setup and given the empirical univariate results
above, we examine the multivariate relationship of normalized returns in a
regression context. First we examine the dynamic structure of risk adjusted
returns using Granger causality tests and the existence of a linear regres-
sion relationship for YN/US$ and DM/US$ normalized returns. Table 6 also
presents these results for the bidirectional causality between the YN/US$
and DM/US$ risk adjusted returns. It is shown that there is no significant
empirical evidence of a lead-lag relationship between the co-movements of
the two FX series. This result appears robust to the different specifications
of volatility and sampling frequencies, the choice of lag length in the VAR(p)
representation for studying the causality relationship as well as when that is
augmented by the contemporaneous regressor. In contrast to the inexistence
of a dynamic relationship between risk adjusted returns there is significant
correlation between the YN/US$ and DM/US$ standardized returns. This
is examined using two methods. The first method applies the Tse (2000)
test (which has good properties in the presence of non-normality) for which
the two FX standardized returns provide empirical evidence that supports
that null hypothesis of constant conditional correlation. The second method
examines the relationship of the two normalized FX returns using the simple
linear regression OLS results in Table 8 for the 5- and 30-minute frequen-
cies. In all cases the estimated regression coefficient is highly significant
and ranges from 0.6 to 0.75 as representing the contemporaneous covariance
structure of standardized returns in the DM and YN vis-a-vis the US$. The
statistical adequacy of this regression relationship is examined and the re-
ported residual misspecifications tests show that the Normality assumption
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is empirically invalidated (which is expected given the univariate analysis
above). The additional misspecification results show that the residuals in all
XSV,t and X(H)QV,t regressions support the independence hypothesis except
XQV 1,t in the 30-minute sampling frequency. Summarizing, the empirical re-
sults show a static regression representation with a non-Normal conditional
distribution for the two FX risk adjusted returns. This analysis opens the
route for regression type techniques in detecting change-points and suggests
that the empirical conditional covariance process does not exhibit significant
dynamics.

5.2 Empirical evidence for breaks in FX co-movements

The above empirical regularities of the DM/US$ and YN/US$ normalized
returns suggest that we can apply the least squares methods of Bai and
Perron (1998) and Lavielle and Moulines (2000) as well as the CUSUM test
of Horváth (1997) and Kokoszka and Leipus (1998, 2000) discussed in section
3, in order to examine the presence of structural breaks.

The K&L change-point test results for the conditional covariance between
the DM/US$ and YN/US$ are reported in Table 10. The results show that
the univariate normalized returns (using any volatility filter transformation)
appear to be time-homogeneous processes. However, for the cross-product
of the two FX normalized returns the K&L test shows that there is strong
evidence of a change-point in their co-movements. The breaks are detected
in all specifications of normalized returns and they occur at the same point
in time, namely at 23/3/1995 at which the sequential statistic first exceeds
the 5% control limit. This event is related to a period of high uncertainty
and a series of bilateral interventions by the Bank of Japan and the Fed (see
for instance the Asian Wall Street Journal). It is worth mentioning the para-
metric CUSUMSQ test (Brown et al., 1975) presents empirical evidence for
the instability in the linear regression of the two FX risk adjusted returns.
However, we emphasize that these results are based on the statistical ade-
quacy of the Normal, linear regression model. The presence of heavy tailed
distributions in normalized returns (or generally deviations from Normality)
requires more efficient statistical inference methods for testing the existence
of breaks. Similarly, although the parametric CUSUM is robust to devia-
tions from Normality this result does not extend to the CUSUM of squares
(Ploberger and Kramer, 1986). Note that an application of the parametric
CUSUM does not detect any change-points.
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These results are complemented by testing for multiple breaks using the
L&M regression method and the two information criteria, BIC and LWZ.
Applying the L&M to the cross-product, Y12,t, in equation (4.6) supports
the null hypothesis of time homogeneity in the co-movements of the two FX
series. Given the empirical results in the previous section which support a
static regression framework for the two FX normalized returns, we apply
the L&M test in the context of equation (4.8). The number and timing
of breaks detected (reported in Table 12) not only vary depending on the
information criterion but also on the specification of normalized returns.
The general result is that the tests choose between zero, one and two change-
points and the break dates are relatively more consistent for X(H)QV,t using
both criteria. This is also related to the empirical results comparing the
different normalizations. The two change-points detected are associated with
the events of the US stock market crash in October 1987 and the period before
the repeated bilateral FX market interventions in March 1995. From the
simulation results we learn that the BIC criterion is relatively more powerful
and this is complemented by the empirical evidence which in most cases
detects two change-points. Concluding we find that the co-movements in
YN/US$ and DM/US$ risk adjusted returns for the most efficient class of
filters present evidence for change-points using the recent CUSUM and least-
squares methods in K&L and L&M, respectively. Both approaches yield
consistent results about the change-points in the co-movements whereas the
latter procedure complements the former by detecting an additional break in
the sample.

6 Conclusions

We propose reduced form procedures designed to uncover breaks in the co-
movements of financial markets via testing for change-points in linear rela-
tionships involving returns normalized by conditional volatility. There are
several advantages to using normalized returns. Among the advantages we
noted that (1) the covariance of normalized returns capture conditional corre-
lations, (2) they reduce the complexity of multivariate volatility models along
the same lines as Engle (2002), Engle and Sheppard (2002) and Tse and Tsui
(2002), (3) they allow to separate breaks in univariate processes and breaks
in co-movements, (4) they enable us to adopt two-stage procedure consisting
of a purely data-driven nonparametric first stage and a semiparametric sec-
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ond stage. Though our procedures shares some features with the two-stage
estimation procedure of DCC models, we take a reduced form view that suf-
fices for the change-point test purpose. Since the parametric structure of the
volatility co-movements are largely left unspecified we cover a larger class
of multivariate specifications, including factor ARCH models. Another main
advantage of employing the two-step procedure is that the statistical infer-
ence methods allow for departures from normality and therefore are robust
to heavy tailed distributions. It should also be noted that the returns-to-
volatility process and related measures are used often to appraise portfolio
performance. Such measures include the Treynor ratio which is the square of
the Sharpe ratio (Treynor and Black, 1973). Our two-stage procedure also
applies to various alternative functional forms of normalized returns. Hence,
we can examine structural breaks in Treynor-Black and other measures, and
again not require normality assumptions to do so (similar to the Jobson and
Korkie (1980,1981) approach for the Normal case).

We document, using a ten year period from 1986 to 1996 of YN/US$
and DM/US$ series, that regression models with non-Gaussian errors de-
scribe adequately their co-movements. We find that the co-movements in
YN/US$ and DM/US$ risk adjusted returns for the most efficient class of
filters present evidence for change-points using both the Kokoszka and Lei-
pus (2000) and Lavielle and Moulines (2000) tests. These structural breaks
are associated with the 1987 stock market crisis as well as the 1995 bilateral
FX interventions of the Bank of Japan and the Fed.

In the paper we restrict the simulation and empirical investigations in
bivariate models. Extensions to the multidimensional vector of n assets are
routes for further research. The methods proposed can be adapted to examine
the n−homogeneity of the conditional correlation of the cross-section of assets
when n is large in the context of M-GARCH-CCC models in a similar way
to Horváth et al. (1999) for the mean of n-dependent observations. Further
research in a system of conditional covariance equations for testing change-
points is a useful extension of the present analysis.
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A Data sources and filters

Table A1: Asymptotically Equivalent One-Sided Equal Weighting Schemes

for Volatility Filters

Equivalence to:

26-day filter 30-day filter 52-day filter

Frequency, m m per day Lags Days Lags Days Lags Days

Hourly 5.7 62 10.9 71 12.6 124 21.8

Half-hourly 11.3 87 7.7 101 8.9 175 15.4

Fifteen-minute 22.7 124 5.5 143 6.3 247 10.9

Five-minute 68 218 3.2 245 3.6 428 6.3

One-minute 340 476 2.4 544 1.6 952 2.8

Note: The entries to the table report numerical calculations for window length using the asymptotic

equivalence of the one-sided rolling volatility based on the Foster and Nelson (1996) equation, CF
(m),t ≈

θ

nR+nL
+
√
θΛρnR−nL

nR+nL
+ Λ

n
3

R
+n3

L

3(nR+nL)2
, where the superscript F refers to the flat weighting

scheme, nL and nR are the window length parameters for lags and leads, respectively and Λ, θ and

ρ are higher-order moments (see Foster and Nelson, 1996 for details) which depend on the sampling

frequency m and the characteristics of the underlying diffusion process, but are assumed constant as in

Andreou and Ghysels (2000a). This representation allows us to make relatively simple comparisons of

asymptotically equivalent sampling schemes involving sampling at different frequencies m. For instance,
when nR, nL, θ, Λ and ρ are fixed, then a one-sided window of length nL with daily data yields

the same asymptotic efficiency as a one-sided window of length nLm−1/2
with intra-daily sampled data

at frequency 1/m. We set nL = 26, 30,52.

Table A2: GARCH(1,1) Models in Simulation Design
Daily, m = 1 5min frequency, m = 288 1min frequency, m = 1440

DM/US$ YN/US$ DM/US$ YN/US$ DM/US$ YN/US$

φ(m) 0.022 0.026 0.000078 0.000093 0.0000155 0.0000185

β(m) 0.068 0.104 0.005869 0.009267 0.0026574 0.0041994

γ(m) 0.898 0.844 0.994011 0.990547 0.9973186 0.9957635

κ(m) 3 3 2.494283 2.655314 2.6412370 2.4754561

v(m) 0.647 0.250 0.647044 0.480798 0.645833 0.498652

κ(m).(v(m))2 1.256 0.750 1.613911 1.276670 1.101663 0.615532

Note: The GARCH model parameters are, φ(m), α(m) and β(m), as defined in section 3.1. The kurtosis

parameter is κ(m). The unconditional variance is v(m) = φ(m)/(1− α(m) − β(m)). The daily parameters

for the DM/US $ and YN/US $ were obtained from Andersen and Bollerslev (1998) and cover the period

01/10/87 - 30/09/92.
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In the Monte Carlo design for the evaluation of the high frequency volatility filters we consider the

following sample sizes, T, for the 24 hour traded FX markets:

Tyears Tdays T5 min T1 min

5 1,250 360,000 1,800,000

10 2,500 720,000 3,600,000

We assume that 1 year has 250 trading days. Each experiment is performed with 500 replications. Note

that for the one-sided rolling estimates we create sufficient data before the effective sample (equivalent to

one year). Samples of T=1250 and 2500 trading days (5 and 10 years) are studied.
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Table 1: Monte Carlo Simulations of MSEs and MAEs Ratios, Normality and Second-order Dependence Test
Results for Daily FX Xi = ri/σ i of the YN/US$ calculated at the 5-minute frequency

MSE and MAE Ratios Jarque Bera Normality Test

N-GARCH t-GARCH N-GARCH t-GARCH

ρ12 = 0 ρ12 = 0.5 ρ12 = 0 ρ12 = 0.5

Xi MSE MAE MSE MAE JB JB JB JB

p-value p-value p-value p-value

XRM 0.777 0.994 0.685 0.983 9.481 9.622 16.107 6.389

(0.009) (0.008) (0.000) (0.041)

XRV26 0.714 0.832 0.602 0.849 3.634 3.481 4.514 2.913

(0.163) (0.175) (0.105) (0.233)

XRV52 0.799 0.866 0.663 0.880 2.154 2.228 23.305 9.279

(0.341) (0.328) (0.000) (0.009)

XQV1 - - - - 1.874 1.954 2.011 2.162

(0.392) (0.376) (0.366) (0.339)

XQV2 0.698 0.843 0.976 0.999 1.925 1.969 2.584 2.278

(0.382) (0.374) (0.275) (0.320)

XQV3 0.730 0.860 0.999 0.998 1.948 1.975 3.805 2.564

(0.378) (0.373) (0.149) (0.277)

XHQV1 0.779 0.893 0.674 0.856 1.971 1.999 3.923 2.803

(0.373) (0.368) (0.141) (0.246)

XHQV2 0.890 0.949 0.989 0.997 1.994 1.993 9.121 5.072

(0.368) (0.369) (0.010) (0.079)

XHQV3 0.838 0.938 0.999 0.999 2.005 2.009 14.100 9.624

(0.366) (0.366) (0.001) (0.008)

ARCH Test

N-GARCH t-GARCH

ρ12 = 0 ρ12 = 0

ARCH(5) ARCH(5)

p-value p-value

1.586 1.585

(0.173) (0.255)

1.586 1.586

(0.173) (0.255)

0.983 0.942

(0.515) (0.533)

0.993 0.996

(0.509) (0.519)

0.997 1.002

(0.504) (0.499)

0.998 1.014

(0.504) (0.487)

0.997 1.046

(0.504) (0.479)

0.998 1.030

(0.503) (0.482)

0.997 1.041

(0.503) (0.475)

Note: The simulation design is described in section 3. We consider Normal and Student’s t (with 3 degrees of freedom) M-GARCH-CCC
processes. The volatility filters are defined in section 2.3. The relative Mean Square and Absolute Errors (MSE and MAE) ratios are obtained
vis-a-vis the MSE and MAE of XQV1 for comparison purposes. The standardized returns are tested for Normality using the Jarque-Bera (JB)
test. We also examine any remaining second-order temporal dependence in standardized returns using the ARCH test. The number in
parentheses refer to the lag length. Similar results were obtained for alternative lag lengths. The total sample size is 2500 observations which is
adjusted for the subsample of 2250 due to the standardized returns by rolling volatilities.

38



Table 2a: Nominal Size and Power of the Kokoszka and Leipus (2000) test for a change-point
in the normalized returns and their co-movements from a bivariate GARCH-CCC.

Samples N = 1000 & Change-point timing, π = 0.5

Processes X1,RV26,t X1,RM,t X1,RV26,t ∗ X2,RV26,t X1,RM,t ∗ X2,RM,t

Umax/σVARHAC

Transformations X1,t X1,t Y12,t Y12,t 
2 |Y12,t | Y12,t Y12,t 

2 |Y12,t | σY12
RM

H0 : ω11,0,α11,0,β11,0  and ω11,1,α11,1,β11,1 

DGP1: (0.4, 0.1, 0.5) 0.037 0.057 0.014 0.075 0.053 0.000 0.000 0.000 0.052

DGP2: (0.1, 0.1, 0.8) 0.027 0.070 0.010 0.058 0.052 0.000 0.000 0.000 0.038

H1
A : Break in the dynamics of volatility, β11,0,β11,1 and β22,0,β22,1

DGP1: (0.5, 0.8) 0.060 0.030 0.011 0.065 0.074 0.061 0.004 0.004 0.023

DGP1: (0.5, 0.1) 0.050 0.063 0.010 0.068 0.036 0.146 0.078 0.019 0.057

DGP1: (0.5, 0.4) 0.033 0.057 0.015 0.079 0.044 0.001 0.005 0.006 0.063

DGP2: (0.8, 0.4) 0.023 0.050 0.013 0.039 0.022 0.141 0.013 0.002 0.123

DGP2: (0.8, 0.5) 0.053 0.060 0.007 0.043 0.023 0.028 0.000 0.000 0.077

DGP2: (0.8, 0.3) 0.040 0.040 0.012 0.041 0.018 0.309 0.003 0.000 0.127

H1
B : Break in the constant of volatility, ω11,0,ω11,1 and ω22,0,ω22,1

DGP1: (0.4, 0.8) 0.040 0.053 0.038 0.045 0.031 0.007 0.007 0.002 0.020

DGP1: (0.4, 0.2) 0.068 0.040 0.061 0.093 0.071 0.087 0.062 0.009 0.077

DGP1: (0.4, 0.1) 0.040 0.057 0.097 0.142 0.188 0.197 0.003 0.092 0.117

DGP2: (0.1, 0.2) 0.033 0.043 0.020 0.060 0.044 0.003 0.014 0.000 0.025

DGP2: (0.1, 0.05) 0.040 0.013 0.020 0.089 0.089 0.014 0.042 0.005 0.047

DGP2: (0.1, 0.4) 0.053 0.030 0.008 0.055 0.027 0.072 0.003 0.005 0.023

H1
C : Break in the correlation coefficient, ρ12,0,ρ12,1

DGP1: (0.5,0.6) 0.053 0.043 0.018 0.077 0.012 0.001 0.007 0.000 0.045

DGP1: (0.5,0.9) 0.023 0.020 0.301 0.068 0.037 0.065 0.004 0.006 0.286

DGP1: (0.5,0.4) 0.070 0.050 0.025 0.092 0.070 0.042 0.054 0.009 0.063

DGP1: (0.5,0.1) 0.033 0.047 0.915 0.620 0.150 1.000 0.626 0.178 0.403

DGP2: (0.5,0.6) 0.060 0.050 0.015 0.054 0.052 0.000 0.014 0.003 0.033

DGP2: (0.5,0.9) 0.060 0.020 0.304 0.061 0.025 0.073 0.006 0.006 0.190

DGP2: (0.5,0.4) 0.060 0.083 0.028 0.077 0.090 0.072 0.073 0.023 0.034

DGP2: (0.5,0.1) 0.057 0.037 0.934 0.615 0.195 1.000 0.739 0.250 0.354
Note: (1) The Kokoszka and Leipus (2000) test statistic is Uk =

1
T
∑j=1

k Zj −
k
T

1
T
∑j=k+1

T Zj . The maxUTk is standardized by the

VARHAC estimator, σVARHAC, which is applied to the Xt = rt/

σ i,t i=1,2 and Y12,t = X1,tX2,t transformation from the bovariate GARCH with

assets (a,b). The normalized statistic Umax/σVARHAC converges to the sup of a Brownian Bridge with asymptotic critical value 1.36 at the 5%
significance level. (2) The simulated bivariate GARCH with constant conditional correlation under the null hypothesis of no breaks is speficied
as: r1,t = u1,t h11,t + u2,t h12,t and r2,t = u2,t h22,t + u1,t h12,t where h11,t = ω11 + α11u1,t−1

2
+ β11h11,t−1,

h22,t = ω22 + α22u2,t−1
2

+ β22h22,t−1 and h12,t = ρ12 ∗ h11,t ∗ h22,t . The model is simulated (1,000 replications) where the superscirpts

1 and 0 in the variables and coefficients denote the cases with and without change-points, respectively. Under the alternative hypotheses H1
A,

H1
B the change in parameters refer to both GARCH processes.
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Table 2b: Nominal Size and Power of the Kokoszka and Leipus (2000) test for a change-point in
the normalized returns and their co-movements from a bivariate GARCH with time varying correlation.

Samples N = 1000 & Change-point timing, π = 0.5

Processes X1,RV26,t X1,RM,t X1,RV26,t ∗ X2,RV26,t X1,RM,t ∗ X2,RM,t

Umax/σVARHAC

Returns Transformation X1,t X1,t Y12,t Y12,t 
2 |Y12,t | Y12,t Y12,t 

2 |Y12,t | σY12
RM

H0 : ω11,0,α11,0,β11,0  and ω11,1,α11,1,β11,1 

DGP1: Low persistence 0.067 0.040 0.004 0.056 0.004 0.003 0.038 0.002 0.006

DGP2: High persistence 0.037 0.060 0.001 0.002 0.002 0.006 0.049 0.007 0.006

H1
A : Break in the dynamics of volatility, β11,0,β11,1 and β22,0,β22,1

DGP1: (0.5, 0.8) 0.027 0.043 0.000 0.001 0.000 0.245 0.062 0.008 0.130

DGP1: (0.5, 0.1) 0.043 0.040 0.186 0.003 0.007 0.002 0.249 0.302 0.012

DGP1: (0.5, 0.4) 0.023 0.037 0.002 0.002 0.002 0.004 0.102 0.082 0.001

DGP2: (0.8, 0.4) 0.040 0.040 0.002 0.001 0.001 0.075 0.106 0.052 0.075

DGP2: (0.8, 0.5) 0.040 0.057 0.001 0.002 0.001 0.028 0.090 0.024 0.023

DGP2: (0.8, 0.3) 0.060 0.033 0.001 0.005 0.002 0.171 0.131 0.091 0.177

H1
B : Break in the constant of volatility, ω11,0,ω11,1 and ω22,0,ω22,1

DGP1: (0.4, 0.8) 0.017 0.043 0.000 0.001 0.000 0.014 0.067 0.016 0.001

DGP1: (0.4, 0.2) 0.037 0.033 0.002 0.000 0.000 0.009 0.050 0.004 0.003

DGP1: (0.4, 0.1) 0.037 0.037 0.001 0.001 0.000 0.055 0.095 0.044 0.000

DGP2: (0.1, 0.2) 0.037 0.003 0.001 0.005 0.001 0.017 0.051 0.008 0.013

DGP2: (0.1, 0.05) 0.037 0.023 0.073 0.009 0.005 0.005 0.053 0.005 0.012

DGP2: (0.1, 0.4) 0.053 0.050 0.008 0.018 0.012 0.239 0.152 0.120 0.242

H1
E : Break in the covariance dynamics, β12,0,β12,1

DGP1: (0.5,0.8) 0.037 0.047 0.000 0.000 0.000 0.063 0.072 0.036 0.005

DGP1: (0.5,0.1) 0.063 0.057 0.000 0.003 0.000 0.015 0.060 0.009 0.014

DGP1: (0.5,0.4) 0.040 0.057 0.000 0.000 0.000 0.003 0.060 0.008 0.006

DGP2: (0.8,0.1) 0.037 0.047 0.204 0.030 0.060 0.412 0.014 0.003 0.774

DGP2: (0.8,0.4) 0.053 0.040 0.013 0.003 0.003 0.081 0.024 0.004 0.318

DGP2: (0.8,0.5) 0.050 0.047 0.003 0.004 0.002 0.012 0.007 0.001 0.155

DGP2: (0.8,0.3) 0.030 0.043 0.013 0.012 0.008 0.286 0.044 0.021 0.518
Note: The notes in Table 2a apply.
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Table 3a: Frequency Distribution of the number of change-points obtained with the
Lavielle and Moulines (2000) test applied to the Y12,t

when there is a single break in a M-GARCH-CCC
Samples, T = 1000 and change point, π = 0.5 and Segments, tk = 5

Normalized returns regression Y12,σ i ,t = μ12 + v12,t

Volatility Filter, σi i RV26 RM

Lavielle & Moulines BIC LWZ BIC LWZ

Number of Breaks 0 1 ≥ 2 0 1 ≥ 2 0 1 ≥ 2 0 1 ≥ 2

H0 : ω11,0,α11,0,β11,0 and ω22,0,α22,0,β22,0

DGP1: (0.4, 0.1, 0.5) 1.00 0.00 0.00 1.00 0.00 0.00 0.98 0.02 0.00 1.00 0.00 0.00

DGP2: (0.1, 0.1, 0.8) 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00

H1
A : Break in the dynamics of volatility with β11,0,β11,1 and β22,0,β22,1

DGP1: 0.5,0.6 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00

DGP1: 0.5,0.8 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00

DGP1: 0.5,0.1 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00

DGP1: 0.5,0.7 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00

DGP1: 0.5,0.2 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00

DGP2: 0.8,0.7 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00

DGP2: 0.8,0.4 0.30 0.70 0.00 1.00 0.00 0.00 0.30 0.70 0.00 1.00 0.00 0.00

DGP2: 0.8,0.5 0.84 0.16 0.00 1.00 0.00 0.00 0.90 0.10 0.00 1.00 0.00 0.00

H1
B : Break in the constant of volatility with parameters ω11,0,ω11,1 and ω22,0,ω22,1

DGP1: 0.4,0.1 0.80 0.20 0.00 1.00 0.00 0.00 0.72 0.28 0.00 1.00 0.00 0.00

DGP1: 0.4,0.2 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00

DGP1: 0.4,0.3 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00

DGP1: 0.4,0.8 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00

DGP2: 0.1,0.3 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00

DGP2: 0.1,0.5 1.00 0.00 0.00 1.00 0.00 0.00 0.92 0.08 0.00 1.00 0.00 0.00

DGP2: 0.1,0.2 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00

H1
C : Break in the correlation coefficient ρ12,0,ρ12,1

DGP1: 0.5,0.1 0.00 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00

DGP1: 0.5,0.3 0.63 0.37 0.00 1.00 0.00 0.00 0.60 0.40 0.00 1.00 0.00 0.00

DGP1: 0.5,0.2 0.00 1.00 0.00 0.80 0.20 0.00 0.00 1.00 0.00 0.00 1.00 0.00

DGP1: 0.5,0.4 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00

DGP1: 0.5,0.8 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00

DGP2: 0.5,0.1 0.00 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00

DGP2: 0.5,0.3 0.67 0.33 0.00 1.00 0.00 0.00 0.47 0.53 0.00 1.00 0.00 0.00

DGP2: 0.5,0.2 0.00 1.00 0.00 0.80 0.20 0.00 0.00 1.00 0.00 0.00 0.20 0.00

DGP2: 0.5,0.4 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00

DGP2: 0.5,0.8 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00

Notes: The Lavielle and Moulines (2000) test is described in section 3. The Bayesian Information Criterion (BIC) and its modification by Liu et al. (1997)

denoted as LWZ are used. The simulations focus on DGP1, DGP2, T = 1000 for 500 trials. For comparison purposes the alternative hypotheses of change

points are similar to the K&L simulations (Table 2) and extended to larger breaks. Reported is the frequency distribution of the breaks detected. The highlighted

numbers refer to the true number of change-points in the simulated process.
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Table 3b: Frequency Distribution of the number of change-points obtained with
the Lavielle and Moulines (2000) test applied to the Y12,t

when there is a single break in a M-GARCH with dynamic conditinal correlation
Samples, T = 1000 and change point, π = 0.5

Normalized returns regression Y12,σ i ,t = μ12 + v12,t

Volatility Filter, σi, i RV26 RM

Lavielle & Moulines BIC LWZ BIC LWZ

Segments, tk = 5

Number of Breaks 0 1 ≥ 2 0 1 ≥ 2 0 1 ≥ 2 0 1 ≥ 2

H0 : ω11,0,α11,0,β11,0 and ω22,0,α22,0,β22,0

DGP1: (0.4, 0.1, 0.5) 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00

DGP2: (0.1, 0.1, 0.8) 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00

H1
A : Break in the dynamics of volatility with parameters β11,0,β11,1 and β22,0,β22,1

DGP1: 0.5,0.6 0.40 0.22 0.36 0.92 0.08 0.00 0.38 0.28 0.32 0.92 0.08 0.00

DGP1: 0.5,0.8 0.16 0.26 0.58 0.94 0.06 0.00 0.40 0.20 0.34 0.92 0.06 0.02

DGP1: 0.5,0.1 0.38 0.24 0.36 0.94 0.02 0.04 0.38 0.22 0.40 0.94 0.06 0.00

DGP1: 0.5,0.2 0.28 0.18 0.50 0.88 0.12 0.00 0.36 0.26 0.36 0.94 0.04 0.02

DGP2: 0.8,0.7 0.42 0.22 0.34 0.88 0.10 0.02 0.36 0.26 0.34 0.94 0.06 0.00

DGP2: 0.8,0.5 0.42 0.14 0.52 0.92 0.04 0.04 0.44 0.20 0.34 0.98 0.02 0.00

DGP2: 0.8,0.4 0.22 0.20 0.58 0.96 0.02 0.02 0.40 0.20 0.38 0.98 0.02 0.02

H1
B : Break in the constant of volatility with parameters ω11,0,ω11,1 and ω22,0,ω22,1

DGP1: 0.4,0.5 0.24 0.22 0.52 0.92 0.06 0.02 0.36 0.24 0.36 0.98 0.02 0.00

DGP1: 0.4,0.8 0.40 0.16 0.38 0.96 0.04 0.00 0.40 0.20 0.38 0.98 0.02 0.00

DGP2: 0.1,0.3 0.32 0.20 0.40 0.92 0.06 0.02 0.28 0.30 0.42 0.90 0.08 0.02

DGP2: 0.1,0.5 0.34 0.16 0.38 0.94 0.04 0.02 0.42 0.10 0.48 0.96 0.04 0.00

DGP2: 0.1,0.2 0.32 0.20 0.42 0.94 0.06 0.00 0.50 0.18 0.30 0.96 0.04 0.00

H1
D : Break in the constant of the conditional covariance coefficient ω12,0,ω12,1

DGP1: 0.4,0.1 0.38 0.12 0.42 0.92 0.08 0.00 0.24 0.36 0.40 0.94 0.06 0.00

DGP1: 0.4,0.2 0.34 0.16 0.44 0.96 0.02 0.02 0.26 0.30 0.33 0.98 0.02 0.00

DGP1: 0.4,0.3 0.30 0.38 0.28 0.94 0.04 0.02 0.36 0.18 0.42 0.92 0.06 0.02

DGP1: 0.4,0.8 0.36 0.26 0.36 0.96 0.04 0.00 0.44 0.24 0.30 0.96 0.04 0.00

DGP2: 0.1,0.3 0.36 0.10 0.50 0.88 0.10 0.02 0.42 0.22 0.34 0.90 0.10 0.00

DGP2: 0.1,0.5 0.32 0.28 0.34 0.88 0.08 0.04 0.40 0.28 0.32 0.98 0.02 0.00

DGP2: 0.1,0.2 0.34 0.32 0.30 0.98 0.02 0.00 0.44 0.14 0.36 0.96 0.04 0.00

H1
E : Break in the dynamics of the conditional covariance coefficient b12,0,b12,1

DGP1: 0.5,0.8 0.38 0.22 0.39 0.94 0.04 0.02 0.38 0.20 0.36 0.98 0.02 0.00

DGP1: 0.5,0.2 0.34 0.16 0.44 0.96 0.02 0.02 0.42 0.14 0.40 0.96 0.04 0.00

DGP1: 0.5,0.1 0.30 0.38 0.28 0.94 0.04 0.02 0.48 0.12 0.32 0.98 0.02 0.00

DGP1: 0.5,0.4 0.18 0.32 0.42 0.92 0.08 0.00 0.32 0.32 0.34 0.92 0.08 0.00

DGP2: 0.8,0.4 0.26 0.26 0.46 0.94 0.04 0.02 0.44 0.28 0.28 0.96 0.04 0.00

DGP2: 0.8,0.5 0.38 0.20 0.34 0.96 0.04 0.00 0.32 0.26 0.38 0.92 0.06 0.02

DGP2: 0.8,0.7 0.40 0.16 0.42 0.96 0.02 0.02 0.32 0.20 0.46 1.00 0.00 0.00

Notes: The notes in Table 3a apply.
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Table 4a: Frequency Distribution of the number of change-points obtained with the
Lavielle and Moulines (2000) test applied to the regression of normalized returns

when there is a single break in a M-GARCH-CCC process
Samples, T = 1000 and change point, π = 0.5 and Segments, tk = 5

Normalized returns regression X1,σ i ,t = θ12 + η12X2,σ i ,t + v12,t

Volatility Filter, σi i RV26 RM

Lavielle & Moulines BIC LWZ BIC LWZ

Number of Breaks 0 1 ≥ 2 0 1 ≥ 2 0 1 ≥ 2 0 1 ≥ 2

H0 : ω11,0,α11,0,β11,0 and ω22,0,α22,0,β22,0

DGP1: (0.4, 0.1, 0.5) 1.00 0.00 0.00 1.00 0.00 0.00 0.98 0.02 0.00 1.00 0.00 0.00

DGP2: (0.1, 0.1, 0.8) 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00

H1
A : Break in the dynamics of volatility with parameters β11,0,β11,1 and β22,0,β22,1

DGP1: 0.5,0.6 0.96 0.04 0.00 1.00 0.00 0.00 0.98 0.02 0.00 1.00 0.00 0.00

DGP1: 0.5,0.8 0.00 1.00 0.00 0.44 0.56 0.00 0.00 0.98 0.02 0.38 0.62 0.00

DGP1: 0.5,0.1 0.70 0.30 0.00 1.00 0.00 0.00 0.48 0.52 0.00 1.00 0.00 0.00

DGP1: 0.5,0.7 1.00 0.00 0.00 1.00 0.00 0.00 0.46 0.54 0.00 0.98 0.02 0.00

DGP1: 0.5,0.2 1.00 0.00 0.00 1.00 0.00 0.00 0.82 0.18 0.00 1.00 0.00 0.00

DGP2: 0.8,0.7 0.02 0.96 0.02 0.98 0.02 0.00 0.88 0.12 0.00 1.00 0.00 0.00

DGP2: 0.8,0.4 0.00 1.00 0.00 0.78 0.22 0.00 0.46 0.54 0.00 0.98 0.02 0.00

DGP2: 0.8,0.5 0.02 0.96 0.02 0.98 0.02 0.00 0.04 0.94 0.02 0.94 0.06 0.00

H1
B : Break in the constant of volatility with parameters ω11,0,ω11,1 and ω22,0,ω22,1

DGP1: 0.4,0.1 0.04 0.96 0.00 0.92 0.08 0.00 0.06 0.94 0.00 0.94 0.06 0.00

DGP1: 0.4,0.2 0.76 0.24 0.00 1.00 0.00 0.00 0.62 0.38 0.00 1.00 0.00 0.00

DGP1: 0.4,0.3 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00

DGP1: 0.4,0.8 0.10 0.90 0.00 1.00 0.00 0.00 0.20 0.80 0.00 1.00 0.00 0.00

DGP2: 0.1,0.3 0.10 0.90 0.00 1.00 0.00 0.00 0.96 0.04 0.00 1.00 0.00 0.00

DGP2: 0.1,0.5 0.00 0.98 0.02 0.00 1.00 0.00 0.00 0.98 0.02 0.00 1.00 0.00

DGP2: 0.1,0.2 0.74 0.26 0.00 1.00 0.00 0.00 0.92 0.08 0.00 1.00 0.00 0.00

H1
C : Break in the correlation coefficient ρ12,0,ρ12,1

DGP1: 0.5,0.1 0.00 1.00 0.00 0.00 1.00 0.00 0.00 0.98 0.02 0.00 1.00 0.00

DGP1: 0.5,0.3 0.00 1.00 0.00 0.88 0.12 0.00 0.00 1.00 0.00 0.78 0.22 0.00

DGP1: 0.5,0.4 0.90 0.10 0.00 1.00 0.00 0.00 0.92 0.08 0.00 1.00 0.00 0.00

DGP1: 0.5,0.8 0.00 1.00 0.00 0.26 0.74 0.00 0.00 0.95 0.05 0.35 0.65 0.00

DGP2: 0.5,0.1 0.00 1.00 0.00 0.00 1.00 0.00 0.02 0.98 0.00 0.80 0.20 0.00

DGP2: 0.5,0.3 0.02 0.98 0.00 0.92 0.08 0.00 0.00 0.98 0.02 0.88 0.12 0.00

DGP2: 0.5,0.4 0.90 0.10 0.00 1.00 0.00 0.00 0.90 0.10 0.00 1.00 0.00 0.00

DGP2: 0.5,0.8 0.00 1.00 0.00 0.30 0.70 0.00 0.88 0.12 0.04 1.00 0.00 0.00

Notes: The notes in Table 3a apply.
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Table 4b: Frequency Distribution of the number of change-points obtained with the
Lavielle and Moulines (2000) test applied to the regression of normalized returns
when there is a single break in a M-GARCH with dynamic conditional covariance.
Samples, T = 1000 and change point, π = 0.5

Normalized returns regression X1,σ i ,t = θ12 + η12X2,σ i ,t + v12,t

Volatility Filter, σi, i RV26 RM

Lavielle & Moulines BIC LWZ BIC LWZ

Segments, tk = 5

Number of Breaks 0 1 ≥ 2 0 1 ≥ 2 0 1 ≥ 2 0 1 ≥ 2

H0 : ω11,0,α11,0,β11,0 and ω22,0,α22,0,β22,0

DGP1: (0.4, 0.1, 0.5) 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00

DGP2: (0.1, 0.1, 0.8) 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00

H1
A : Break in the dynamics of volatility with parameters β11,0,β11,1 and β22,0,β22,1

DGP1: 0.5,0.6 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00

DGP1: 0.5,0.8 0.00 1.00 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.95 0.05 0.00

DGP1: 0.5,0.1 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00

DGP1: 0.5,0.7 0.96 0.04 0.00 1.00 0.00 0.00 0.98 0.02 0.00 1.00 0.00 0.00

DGP1: 0.5,0.2 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00

DGP2: 0.8,0.7 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00

DGP2: 0.8,0.5 0.54 0.46 0.00 1.00 0.00 0.00 0.59 0.41 0.00 1.00 0.00 0.00

DGP2: 0.8,0.4 0.00 1.00 0.00 1.00 0.00 0.00 0.00 1.00 0.00 1.00 0.00 0.00

H1
B : Break in the constant of volatility with parameters ω11,0,ω11,1 and ω22,0,ω22,1

DGP1: 0.4,0.5 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00

DGP1: 0.4,0.8 0.80 0.20 0.00 1.00 0.00 0.00 0.44 0.56 0.00 1.00 0.00 0.00

DGP2: 0.1,0.3 0.14 0.86 0.00 1.00 0.00 0.00 0.01 0.99 0.00 1.00 0.00 0.00

DGP2: 0.1,0.5 0.00 1.00 0.00 0.32 0.68 0.00 0.00 1.00 0.00 0.26 0.74 0.00

DGP2: 0.1,0.2 0.96 0.04 0.00 1.00 0.00 0.00 0.98 0.02 0.00 1.00 0.00 0.00

H1
D : Break in the constant of the conditional covariance coefficient ω12,0,ω12,1

DGP1: 0.4,0.1 0.00 1.00 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.26 0.74 0.00

DGP1: 0.4,0.2 1.00 0.00 0.00 1.00 0.00 0.00 0.40 0.60 0.00 1.00 0.00 0.00

DGP1: 0.4,0.3 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00

DGP1: 0.4,0.8 0.80 0.20 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.22 0.78 0.00

DGP2: 0.1,0.3 0.10 0.90 0.00 1.00 0.00 0.00 0.96 0.04 0.00 1.00 0.00 0.00

DGP2: 0.1,0.5 0.00 1.00 0.00 0.30 0.70 0.00 0.00 1.00 0.00 0.00 1.00 0.00

DGP2: 0.1,0.2 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00

H1
E : Break in the dynamics of the conditional covariance coefficient b12,0,b12,1

DGP1: 0.5,0.8 0.00 1.00 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.94 0.06 0.00

DGP1: 0.5,0.2 1.00 0.00 0.00 1.00 0.00 0.00 0.92 0.08 0.00 1.00 0.00 0.00

DGP1: 0.5,0.1 1.00 0.00 0.00 1.00 0.00 0.00 0.42 0.58 0.00 1.00 0.00 0.00

DGP1: 0.5,0.4 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00

DGP2: 0.8,0.4 0.00 1.00 0.00 0.20 0.80 0.00 0.00 1.00 0.00 0.01 0.99 0.00

DGP2: 0.8,0.5 0.00 1.00 0.00 0.92 0.08 0.00 0.00 1.00 0.00 0.66 0.34 0.00

DGP2: 0.8,0.7 0.98 0.02 0.00 1.00 0.00 0.00 0.90 0.10 0.00 1.00 0.00 0.00

Note: The notes in Table 4a apply.
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Table 5: Nonlinear Dependence Test Results for Daily YN/US$ and DM/US$ Standardized Returns
based on various intraday sampling frequencies

YN/US$

5min. frequency 30min. frequency

Xi ARCH(1) ARCH(5) ARCH(1) ARCH(5)

p-value p-value p-value p-value

XRM 0.361 0.257 3.072 0.868

(0.548) (0.936) (0.079) (0.501)

XRV26 0.387 1.278 5.736 1.938

(0.534) (0.270) (0.017) (0.085)

XRV52 0.026 0.257 13.326 4.229

(0.872) (0.936) (0.000) (0.001)

XQV1 2.314 0.921 4.099 1.553

(0.128) (0.466) (0.043) (0.170)

XQVk 2.254 0.900 5.266 2.169

(0.133) (0.480) (0.022) (0.055)

XQVℓ -0.011 0.741 0.105 0.929

(0.553) (0.593) (0.745) (0.461)

XHQV1 4.801 1.604 8.037 3.074

(0.029) (0.155) (0.005) (0.009)

XHQVk 0.836 1.197 0.035 1.705

(0.361) (0.308) (0.851) (0.130)

XHQVℓ 0.006 1.008 0.542 1.006

(0.936) (0.412) (0.462) (0.412)

DM/US$

5min. frequency 30min. frequency

ARCH(1) ARCH(5) ARCH(1) ARCH(5)

p-value p-value p-value p-value

0.039 0.199 3.972 2.860

(0.843) (0.963) (0.049) (0.014)

1.601 0.843 4.375 2.126

(0.206) (0.519) (0.037) (0.059)

1.120 2.491 10.772 2.974

(0.289) (0.029) (0.001) (0.011)

6.517 2.535 9.001 3.330

(0.011) (0.027) (0.003) (0.005)

5.271 2.392 9.284 4.078

(0.022) (0.036) (0.002) (0.001)

1.143 2.453 5.738 2.421

(0.285) (0.032) (0.017) (0.034)

7.173 2.654 13.274 4.446

(0.008) (0.021) (0.000) (0.000)

2.074 2.338 1.193 3.099

(0.149) (0.039) (0.275) (0.009)

0.855 2.494 0.074 1.067

(0.355) (0.029) (0.786) (0.377)

Note: The volatility filters are defined in section 2.3. The data set refers to the 5-minute YN/US$ from 1/12/86 to 30/11/96 which yields a daily sample size of

T=2446 days and is adjusted for a subsample of 2346, excluding the first 100 observations as a result of the rolling volatility estimators. The window lengths

k=2,4,6 and l=3,8,12 days for the 5-, 30- and 60-minutes frequency, respectively. The ARCH test for alternative lag lengths and respective p-values in

parentheses are reported.
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Table 6: Linear Dependence and Granger Causality Test Results for Daily YN/US$ and DM/US$ Standardized Returns
based on various intraday sampling frequencies

Linear Temporal

YN/US$

5min. frequency 30min. frequency

Xi LM(1) LM(5) LM(20) LM(1) LM(5) LM(20)

p-value p-value p-value p-value p-value p-value

XRM 0.361 0.674 1.283 7.347 3.048 2.417

(0.548) (0.644) (0.179) (0.007) (0.009) (0.000)

XRV26 0.114 0.813 1.253 8.244 3.307 2.397

(0.735) (0.540) (0.201) (0.004) (0.006) (0.001)

XRV52 0.376 0.473 1.365 9.779 3.557 2.386

(0.539) (0.797) (0.129) (0.002) (0.003) (0.000)

XQV1 2.007 1.298 1.949 2.353 1.511 2.068

(0.157) (0.262) (0.021) (0.125) (0.183) (0.004)

XQVk 0.716 0.824 1.585 0.807 0.891 1.622

(0.398) (0.532) (0.048) (0.369) (0.486) (0.039)

XQVℓ 0.559 1.191 1.482 0.154 1.048 0.074

(0.454) (0.311) (0.077) (0.695) (0.387) (0.785)

XHQV1 0.782 0.773 1.455 0.699 0.629 1.536

(0.377) (0.569) (0.087) (0.403) (0.678) (0.060)

XHQVk 0.522 0.674 1.455 0.393 0.624 1.420

(0.470) (0.643) (0.087) (0.531) (0.682) (0.102)

XHQVℓ 0.452 0.596 1.427 0.075 0.628 1.208

(0.502) (0.703) (0.099) (0.784) (0.679) (0.237)

Dependence Tests

DM/US$

5min. frequency 30min. frequency

LM(1) LM(5) LM(20) LM(1) LM(5) LM(20)

p-value p-value p-value p-value p-value p-value

0.326 1.127 0.792 5.093 1.604 1.805

(0.568) (0.344) (0.726) (0.024) (0.156) (0.016)

0.682 1.197 0.847 5.745 1.687 1.755

(0.409) (0.308) (0.657) (0.017) (0.134) (0.020)

0.183 1.255 0.759 4.913 1.341 1.832

(0.669) (0.281) (0.765) (0.027) (0.244) (0.014)

0.098 1.311 0.883 0.278 1.556 1.112

(0.754) (0.257) (0.610) (0.598) (0.169) (0.328)

0.003 1.088 0.876 0.010 1.217 0.918

(0.955) (0.365) (0.619) (0.919) (0.299) (0.564)

0.239 1.242 0.907 0.005 1.194 0.917

(0.625) (0.287) (0.579) (0.944) (0.308) (0.563)

0.010 0.951 0.829 0.029 0.974 0.839

(0.919) (0.447) (0.680) (0.864) (0.432) (0.665)

0.167 1.071 0.891 0.849 1.209 0.922

(0.683) (0.375) (0.599) (0.357) (0.302) (0.559)

0.568 1.054 1.227 0.622 1.271 0.928

(0.451) (0.384) (0.221) (0.430) (0.274) (0.550)

Granger Causality Test Results between

YN(σ) and DM(σ) Normalized Returns

Direction of Causality 5-minute 30-minute

F-test p-value F-test p-value

YN(RM_1), DM(RM) 0.315 (0.575) 0.038 (0.846)

2.807 (0.094) 4.659 (0.031)

YN(RV26_1), DM(RV26) 0.099 (0.753) 0.003 (0.959)

2.694 (0.101) 4.135 (0.042)

YN(RV52_1), DM(RV52) 0.436 (0.509) 0.050 (0.822)

3.434 (0.064) 4.034 (0.045)

YN(QV1_1), DM(QV1) 0.678 (0.400) 0.255 (0.614)

3.278 (0.070) 3.669 (0.056)

YN(QVk_1), DM(QVk) 0.927 (0.336) 0.688 (0.407)

3.159 (0.079) 2.766 (0.096)

YN(QVℓ_1), DM(QVℓ) 0.492 (0.482) 0.163 (0.686)

2.743 (0.098) 1.799 (0.179)

YN(HQV1_1), DM(HQV1) 1.203 (0.273) 0.974 (0.324)

2.975 (0.085) 2.467 (0.117)

YN(HQVk_1), DM(HQVk) 0.849 (0.357) 0.789 (0.374)

3.202 (0.074) 2.452 (0.117)

YN(HQVℓ_1), DM(HQVℓ) 0.734 (0.392) 0.259 (0.611)

3.063 (0.080) 2.253 (0.134)

Note: The volatility filters are defined in section 2.3. The data set refers to the 5-minute YN/US$ from 1/12/86-30/11/96, T=2446 days and is adjusted for a subsample of 2346, excluding the first 100 observations
as a result of the rolling volatility estimators. The window lengths k=2,4,6 and l=3,8,12 days for the 5-, 30- and 60-minutes frequency, respectively. The sample linear dependence hypothesis is examined using
Lagrange Multiplier (LM) tests for alternative lag lengths along with their respective p-values. The normalized returns YN(.) and DM(.) denote the YN/US$ and DM/US$ risk adjusted returns, respectively. The
direction of noncausality runs from the lagged variable to the contemporaneous one. The reverse causality for each case is given by the second line of each pair of normalized returns.
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Table 7: Normality Test Results for Daily YN/US$ Standardized Returns
based on various intraday sampling frequencies

YN/US$

5min. frequency 30min. frequency

Xi Sk. AD BJ Sk. AD BJ

Kr. p-value p-value Kr. p-value p-value

XRM -0.215 4.305 51.511 -0.174 9.062 167.08

3.585 (0.000) (0.000) 4.260 (0.000) (0.000)

XRV26 -0.251 7.566 148.74 -0.226 15.403 446.74

4.127 (0.000) (0.000) 5.089 (0.000) (0.000)

XRV52 -0.309 11.196 327.21 -0.380 25.022 1471.9

4.722 (0.000) (0.000) 6.805 (0.000) (0.000)

XQV1 -0.030 0.558 1.064 -0.055 1.029 10.407

2.915 (0.149) (0.588) 2.693 (0.010) (0.000)

XQVk -0.091 2.720 35.943 -0.093 1.384 12.914

3.579 (0.000) (0.000) 3.312 (0.001) (0.000)

XQVℓ -0.113 5.598 105.5 -0.192 7.459 151.9

3.992 (0.000) (0.000) 4.193 (0.000) (0.000)

XHQV1 -0.138 5.248 120.04 -0.134 3.355 59.811

4.073 (0.000) (0.000) 3.736 (0.000) (0.000)

XHQVk -0.191 8.683 245.61 -0.149 9.976 314.04

4.539 (0.000) (0.000) 4.769 (0.000) (0.000)

XHQVℓ -0.202 10.719 327.82 -0.179 11.298 380.72

4.787 (0.000) (0.000) 4.943 (0.000) (0.000)

DM/US$

5min. frequency 30min. frequency

Sk. AD BJ Sk AD BJ

Kr. p-value p-value Kr. p-value p-value

-0.012 1.890 8.210 0.142 7.589 170.59

3.289 (0.000) (0.017) 4.290 (0.000) (0.000)

-0.019 4.233 55.713 0.256 12.430 451.08

3.754 (0.000) (0.000) 5.086 (0.000) (0.000)

-0.030 6.788 132.50 0.277 19.598 1359.3

3.989 (0.000) (0.000) 6.688 (0.000) (0.000)

-0.011 0.418 6.605 -0.012 1.214 17.845

2.741 (0.328) (0.037) 2.573 (0.004) (0.000)

-0.005 0.880 2.479 -0.004 0.491 0.256

3.159 (0.024) (0.289) 3.051 (0.219) (0.880)

-0.021 1.945 3.292 0.009 3.215 3.699

3.359 (0.000) (0.001) 3.194 (0.000) (0.157)

-0.110 2.942 132.12 -0.092 2.676 82.549

4.142 (0.000) (0.000) 3.902 (0.000) (0.000)

-0.082 4.649 151.52 -0.059 5.664 132.39

4.235 (0.000) (0.000) 4.159 (0.000) (0.000)

-0.054 5.555 154.06 -0.099 6.671 280.06

4.251 (0.000) (0.000) 4.683 (0.000) (0.000)

Note: The volatility filters are defined in section 2.3. The data set refers to the 5-minute YN/US$ from 1/12/86 to 30/11/96 which yields a daily sample size of T=2446 days and is adjusted for a subsample of
2346, excluding the first 100 observations as a result of the rolling volatility estimators. The window lengths k=2,4,6 and l=3,8,12 days for the 5-, 30- and 60-minutes frequency, respectively. The sample Skewness
and Kurtosis (Sk and Kr., respectively) are reported. The test statistics reported refer to the Anderson-Darling (AD), Bera-Jarque (BJ) along with their respective p-values.
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Table 8: Linear Regression Results of Daily YM/US$ on DM/US$ Standardized Returns based on Intra-day Sampling Frequencies
5-minute sampling frequency

OLS results Residual Misspecification results

Xi const. beta BJ Sk. ARCH(1) ARCH(5) LM(1) LM(5)

p-value p-value p-value Kr. p-value p-value p-value p-value

XRM -0.017 0.603 601.95 -0.566 2.468 1.115 1.220 0.702

(0.276) (0.000) (0.000) 5.209 (0.116) (0.350) (0.269) (0.622)

XRV26 -0.021 0.604 884.21 -0.597 1.847 1.091 1.298 0.917

(0.208) (0.000) (0.000) 5.760 (0.174) (0.363) (0.225) (0.469)

XRV52 -0.023 0.603 1542.4 -0.766 4.217 1.987 1.619 0.729

(0.172) (0.000) (0.000) 6.664 (0.040) (0.078) (0.203) (0.601)

XQV1 0.004 0.605 54.153 -0.223 1.508 3.238 0.394 0.440

(0.759) (0.000) (0.000) 3.595 (0.219) (0.006) (0.530) (0.821)

XQV2 -0.004 0.607 284.72 -0.400 0.507 1.524 1.603 1.524

(0.784) (0.000) (0.000) 4.507 (0.476) (0.179) (0.206) (0.179)

XQV3 -0.003 0.609 283.44 -0.397 0.513 1.538 1.540 0.588

(0.821) (0.000) (0.000) 4.505 (0.474) (0.175) (0.215) (0.709)

XHQV1 -0.0002 0.607 442.81 -0.422 0.069 0.959 2.335 0.599

(0.861) (0.000) (0.000) 4.902 (0.793) (0.442) (0.127) (0.701)

XHQV2 -0.0003 0.603 1117.7 -0.614 0.174 0.675 2.418 0.607

(0.611) (0.000) (0.000) 6.152 (0.676) (0.643) (0.120) (0.694)

XHQV3 -0.0003 0.602 1435.1 -0.662 0.420 0.679 2.274 0.598

(0.530) (0.000) (0.000) 6.597 (0.517) (0.639) (0.132) (0.702)

30-minute sampling frequency

OLS results Residual Misspecification results

const. beta BJ Sk. ARCH(1) ARCH(5) LM(1) LM(5)

p-value p-value p-value Kr. p-value p-value p-value p-value

-0.032 0.746 52786 -2.068 0.010 0.073 1.749 2.569

(0.011) (0.000) (0.000) 25.862 (0.919) (0.996) (0.186) (0.025)

-0.032 0.743 84087 2.463 0.022 0.044 0.854 2.345

(0.024) (0.000) (0.000) 31.907 (0.883) (0.999) (0.355) (0.039)

-0.038 0.722 175997 -3.336 1.229 0.039 1.229 2.051

(0.009) (0.000) (0.000) 44.895 (0.268) (0.999) (0.268) (0.069)

0.007 0.600 31.273 -0.193 0.786 3.492 0.180 0.459

(0.659) (0.000) (0.000) 3.414 (0.375) (0.004) (0.671) (0.807)

0.0006 0.607 183.84 -0.329 0.475 1.789 1.281 0.523

(0.971) (0.000) (0.000) 4.204 (0.491) (0.112) (0.258) (0.759)

-0.016 0.618 609.2 -0.485 1.535 0.350 1.028 0.499

(0.016) (0.016) (0.000) 5.244 (0.215) (0.882) (0.311) (0.777)

0.0002 0.605 201.57 -0.325 0.031 1.208 1.465 0.352

(0.938) (0.000) (0.000) 4.282 (0.861) (0.303) (0.226) (0.881)

-0.0006 0.632 803.44 -0.514 1.223 0.716 1.679 0.485

(0.648) (0.000) (0.000) 5.681 (0.269) (0.612) (0.195) (0.788)

-0.0007 0.609 1187.5 -0.572 0.777 0.196 1.618 0.474

(0.407) (0.000) (0.000) 6.297 (0.574) (0.964) (0.204) (0.796)

Note: The notes in Tables 6,7 and 8 apply.
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Table 9: Kokoszka and Leipus (2000) Change-point Test Results of Daily YM/US$ on DM/US$ Standardized Returns
based on 30 minute Intra-day Sampling Frequency

Univariate Normalized Returns Comovements of Normalized Returns and Break Dates

XYN/US$,σi XDM/US$,σi YYN/US$DM/US$,σi k∗

σ i Umax Umax/σVARHAC k∗ Umax Umax/σVARHAC k∗ Umax Umax/σVARHAC

RM 0.692 0.706 - 0.828 0.839 - 6.674 5.215* Mar.95

RV26 0.802 0.810 - 0.786 0.788 - 1.921 1.413* Oct.87

RV52 0.822 0.806 - 0.870 0.856 - 1.777 1.178 -

QV1 1.066 1.106 - 0.933 0.937 - 3.836 3.503* Oct.87

QV4 1.138 1.133 - 0.957 0.929 - 3.934 2.980* Oct.87

QV8 1.188 1.184 - 0.951 0.914 - 3.316 2.245* Oct.87

HQV1 0.165 1.086 - 0.139 0.879 - 8.265 2.453* Oct.87

HQV4 0.088 1.128 - 0.079 1.003 - 1.845 1.984* Oct.87

HQV8 0.063 1.149 - 0.052 0.945 - 0.855 1.818* Oct.87

Note: The Kokoszka and Leipus (1998, 2000) test is discussed in section 3. The test statistic is Uk =
1

T
∑j=1

k Xj
2
−

k
T

1

T
∑j=k+1

T Xj
2 . The maxUTk is standardized by the VARHAC estimator,

σVARHAC, which is applied to the Xt transformation from the multivariate GARCH model. The normalized statistic Umax/σVARHAC converges to the sup of a Brownian Bridge with asymptotic critical value 1.36 at
the 5% significance level. k∗ refers to the timing of the break. The test is applied to the univariate normalized returns series as well as the cross product of the YN/US$ and DM/US$ risk adjusted returns.
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Table 10: Lavielle and Moulines (2000) Multiple Breaks Test Results of Daily YM/US$ on DM/US$ Standardized Returns
based on 30 minute Intra-day Sampling Frequency

Univariate Normalized Returns Comovements of Normalized Returns and Break Dates

XYN/US$,σi XDM/US$,σi XYN/US$,i = θ + ηXDM/US$,σi + ut k∗

σ i SIC(k) LWZ(k) k∗ SIC(k) LWZ(k) k∗ SIC(k) LWZ(k)

RM -0.042 (0) -0.041 (0) - -0.028 (0) -0.027 (0) - -0.298 (1) -0.285 (1) Oct.87, Mar.95 Mar.95

-0.301 (2) -0.184 (0)

RV26 -0.014 (0) -0.013 (0) - -0.004 (0) -0.004 (0) - -0.497 (1) 0.495 (0) Oct.87 -

-0.496 (0)

RV52 0.037 (0) 0.037 (0) - 0.032 (0) 0.033 (0) - -0.438 (2) -0.435 (0) Oct.87, Mar.95 -

-0.437 (1)

QV1 -0.067 (0) -0.066 (0) - -0.004 (0) -0.004 (0) - -0.529 (2) -0.515 (1) Oct.87, Mar.95 Oct.87

-0.528 (1) -0.512 (0)

QV4 0.015 (0) 0.015 (0) - 0.066 (0) 0.066 (0) - -0.469 (2) -0.454 (1) Oct.87, Mar.95 Oct.87

-0.467 (1) -0.452 (0)

QV8 0.060 (0) 0.060 (0) - 0.078 (0) 0.079 (0) - -0.438 (2) -0.426 (0) Oct.87, Mar.95 -

-0.435 (1)

HQV1 -3.684 (0) -3.684 (0) - -3.766 (0) -3.765 (0) - -4.309 (1) -4.295 (1) Oct.87 Oct.87

-4.286 (0) -4.285 (0)

HQV4 -5.085 (0) -5.085 (0) - -5.110 (0) -5.109 (0) - -5.629 (2) -5.614 (1) Oct.87, Mar.95 Oct.87, Mar.95

-5.628 (1) -5.611 (0)

HQV8 -5.803 (0) -5.802 (0) - -5.827 (0) -5.827 (0) - -6.337 (2) -6.323 (2) Oct.87, Mar.95 Oct.87, Mar.95

-6.336 (1) -6.321 (1)

Note: The Lavielle and Moulines (2000) test is discussed in section 3. The Bayesian Information Criterion (BIC) and its modification by Liu et al. (1997) denoted as LWZ are used in the above regression for the
comovements between the normalized returns of the DM/US$ and YN/US$. k∗ refers to the timing of the break. The application of the test to the univariate series does not detect any change-points.
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