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A Rule-driven Approach for Defining the
Behavior of Negotiating Softwar e Agents

Morad Benyoucef', Hakim Alj*, Kim Levy® and Rudolf K. Keller™

Résumé/ Abstract

Un des inconvénients qu'on retrouve fréguemment dans les systemes de
négociation par agents est qu'ils reposent sur des schémas ad-hoc, non adaptatifs et
figés dans le code pour représenter le comportement des agents. Cette limitation est
probablement due a la complexité de I’ activité de négociation elle-méme. En effet, au
cours de la négociation, les agents logiciels (humains) ont des décisions difficiles a
prendre. Ces décisions ne sont pas seulement basées sur I'information disponible sur
le serveur de négociation, mais aussi sur le comportement des autres participants
durant le processus de négociation. L’information et le comportement en question
changent constamment et sont trés incertains. Dans la premiére partie de I’ article, nous
proposons une approche a base de régles pour représenter, gérer et explorer les
stratégies de négociation ainsi que I'information de coordination. Parmi les nombreux
avantages de la solution proposée, on peut citer le haut niveau d abstraction, la
proximité avec la compréhension humaine, la souplesse d' utilisation et la possibilité
de modifier le comportement des agents durant le processus de négociation. Pour
valider notre solution, nous avons effectué plusieurs tournois entre agents et utilisé
I"approche a base de régles pour implémenter des stratégies simples applicables a
I’enchere anglaise et a I’enchere hollandaise. Nous avons aussi implémenté des
schémas simples de coordination impliquant plusieurs enchéres. Le travail de
validation, en cours, est détaillé et discuté dans la seconde partie de I’ article.

One problem with existing agent-mediated negotiation systems is that they
rely on ad hoc, static, non-adaptive, and hardcoded schemes to represent the
behaviour of agents. This limitation is probably due to the complexity of the
negotiation task itself. Indeed, while negotiating, software (human) agents face tough
decisions. These decisions are based not only on the information made available by
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the negotiation server, but on the behaviour of the other participants in the
negotiation process as well. The information and the behaviour in question are
constantly changing and highly uncertain. In the first part of the paper, we propose a
rule-driven approach to represent, manage and explore negotiation strategies and
coordination information. For that, we divide the behaviour of negotiating agents into
protocols, strategies and coordination. Among the many advantages of the proposed
solution, we can cite the high level of abstraction, the closeness to human
understanding, the versatility, and the possibility to modify the agents' behaviour
during the negotiation process. To validate our solution, we ran many agent
tournaments, and used the rule-driven approach to implement bidding strategies that
are common in the English and Dutch auctions. We also implemented simple
coordination schemes across several auctions. The ongoing validation work is
detailed and discussed in the second part of the paper.

Mots-clés : Négociation électronique, encheres en ligne, agents logiciels, stratégie de
négociation, coordination, systeme a base de régles, moteur de regles

Keywords: e-negotiation, online auction, software agent, negotiation strategy,
coordination, rule-based system, rule engine



1. Introduction

According to Kephart et al., over the course of the next decade, the global economy and the Internet will merge into
an information economy bustling with billions of autonomous software agents that exchange information goods and
services with humans and other agents [1]. In addition to exchanging information, software agents can be
programmed to search, compare, learn, negotiate, and collaborate [2], making them particularly useful for the
information-rich and process-rich environment of electronic commerce (e-commerce) [3]. As e-commerce usually
involves information filtering and retrieval, personalized evaluation, complex coordination, and time-based
interaction (among other things), it can greatly benefit from the introduction of software agents. Therefore, we talk of
agent-mediated e-commerce. A simple e-commerce transaction can be seen as a three-phase scenario: (1) finding a
partner for the transaction; (2) negotiating the terms of the transaction using a recursive process; (3) and carrying out
the transaction. In this research, we are interested in the negotiation phase, and particularly in its automation by way
of software agents capable of mimicking the behaviour of human negotiators. It has been rightfully stated that agent-
mediated negotiation absorbs many of the costs and inconveniences of manual negotiation [4].

We see the negotiation process as a form of interaction made of protocols and strategies. The protocols comprise
the rules (i.e., the valid actions) of the game, and, for a given protocol, a participant (human or software) uses a
strategy (i.e., a plan of action) to maximize her utility [5]. Based on this, many strategy-enabled agent-mediated
negotiation systems have been described in the literature. Unfortunately, most of them use hardcoded, predefined,
and non-adaptive negotiation strategies, which is evidently insufficient in regard to the ambitions and growing
importance of automated negotiations research. The well-known KASBAH agent marketplace [6] is a good example
of such systems. To overcome this shortcoming, we believe that negotiation strategies should be treated as
declarative knowledge, and could, for instance, be represented as if-then rules, and exploited using inference engines.

The focus of our research is on combined negotiations [7], a case where the consumer combines negotiations for
different complementary products that are not negotiated on the same server. For instance, a consumer may want to
simultaneously purchase an item and its delivery by engaging in separate negotiations. If software agents are
assigned to these negotiations, this poses a coordination problem between them. Many multi-agent negotiation
systems found in the literature still rely on ad hoc schemes to solve this problem [8][9]. Again, we believe that a
declarative approach should be used to describe and manage the coordination of agents across several negotiations.

To validate our approach, we designed and implemented an automated negotiation system called CONSENSUS [7]
that enables a human user to instantiate one or more software agents, provide them with negotiation strategies, as
well as coordination know-how, register them on corresponding negotiation servers, and launch them. The agents use
the strategies to negotiate according to the protocol dictated by the server, and the coordination know-how to
coordinate their actions. An example of a strategy, applicable to an English auction (one of many existing negotiation
protocols) is: “If you notice any form of jump bidding in the auction, then stop bidding and quit”. Jump bidding
means making a bid that is far greater than necessary in order to signal one's interest in the auctioned item (See
Section 4). An example of coordination know-how, applicable to two agents bidding as partners in two separate
auctions for two complementary items is: “If your partner looses in its auction, then stop bidding and wait for
further instructions’ (See Section 4). We are currently testing various strategies and coordination schemes by way of
agent tournaments. A large part of the paper is dedicated to this ongoing validation work.

In the remainder of the paper, Section 2 gives some background on strategy-enabled agent-mediated e-negotiations,
then presents and justifies our solution. In Section 3, we detail our approach to the coordination of negotiating
software agents after providing some background on the subject. Section 4 is dedicated to the experiments we are
currently conducting in order to validate our approach. We wrap up the paper with a conclusion in Section 5.

2. Negotiation Strategies
In this section, we introduce agent-mediated e-negotiation, and then address the challenges of strategy-enabled

negotiation systems. Afterward, we give our view on protocols, strategies and coordination, and present our approach
in representing negotiation strategies.



2.1. Agent-mediated E- negotiation

Electronic negotiation (e-negotiation) takes place when the negotiating function is performed by (networked)
computers. Fully automated e-negotiation requires that all parties involved be software agents, semi-automated e-
negotiation involves a human negotiating with a software agent, and manual e-negotiation refers to processes in
which al parties are human [10]. Within fully automated e-negotiation, Parkes et al. identify autonomous and semi-
autonomous agents. An autonomous agent requires a complete set of preferences in order to represent the user in al
situations. On the other hand, a semi-autonomous agent will bid when it has enough knowledge to proceed, and
guery the user when its best action is ill-defined given the current information [4]. Finally, software agents can be
involved in competitive negotiations when they are adversaries with conflicting interests. They can be involved in
cooperative negotiations when they all aim at satisfying the same interest [11]. The most popular negotiating agents
on the Internet are reservation-price agents, which are capable of bidding in online auctions on behalf of a human

user. Commercial online auctions such as eBay1 refer to this as proxy bidding.

In addition to their use in e-negotiations, agents can be, and are actually used, in other phases of an e-commerce
transaction, including shopping, advertising, delivery, marketing and sales analysis [1]. Pricebots, for instance, are
software agents that employ price-setting algorithms in an attempt to maximize profits, thus helping sellers to

increase flexibility in their pricing strategies. An example taken from [12] points to books.com?, which uses a
pricebot to monitor prices on competitor sites and offer the customer a lower price than what the competitors ask for.
This is called real-time dynamic pricing. Shopbots, to cite another example, are software agents that automatically
gather information from multiple on-line vendors about the price and quality of consumer goods and services[12]. A

successful shopbot on the web today is mysi mon.com3.
2.2. Challenges of Strategy-enabled Negotiation Systems

Designing, building, and tuning software agents before letting them loose in widely competitive scenarios like e-
negotiations, inhabited by (human and software) expert negotiators, happens to be an arduous task [13]. Thisis why,
according to Wong et a. [14], most strategy-enabled agent-based systems use predefined and non-adaptive
negotiation strategies in the generation of offers and counteroffers. Commercial online auction sites such as eBay, for
instance, offer the possibility of proxy bidding (see Section 2.1) which is actually a software agent using a
straightforward strategy: “bid until you reach your reserve price, by going up each time with a certain bid
increment.” On the academic front, the buying (selling) agents in the KASBAH marketplace (see Section 1) can
choose between three negotiation strategies: anxious, cool-headed and frugal, corresponding to linear, quadratic, and
exponential functions, respectively, for increasing (or decreasing) their bid (or ask price) for an item over time [6].

Negotiating agents face tough decisions such as whether or not to accept an offer, whether or not to bid, how much
to bid, and whether or not to quit. Those decisions must profit from all the information available in the marketplace:
available goods and their expected resale value, historical experience on prices, participant’s identity and behaviour,
etc. [13]. The decisions are made even harder to take by the fact that the market information is constantly changing
and highly uncertain — new goods become available, other buyers come and leave, prices keep on changing, no one
knows for sure what utility functions other agents have, etc. To complicate things further, the participants’ goals,
beliefs, intentions are expected to change with time [15].

One piece of information that is vital to the bidder is the valuation of the item at stake. In an auction where the
market price is a common valuation among bidders (e.g., an auction for personal computers), a bidder who wins the
auction is the one with the highest yet possibly overrated valuation. This is called the winner’s curse, and it can be
avoided by predicting the market price of the item by monitoring its pricesin several online auctions [8].

In addition to private and public information, a successful strategy must take into account the strategies of the
opponents [13] as well as their reputation [1]. It must also protect against the opponents trying to extract the agent’s
private information. In a bargaining situation (a bilateral negotiation) for instance, the buyer agent usually knows its

1 http://www.ebay.com
2 http:// books.com
3 http:// mysimon.com



owner’s willingness-to-pay for an item [16]. If the seller agent is made aware of thisinformation, it can make a take-
it-or-leave-it offer that will extract the buyer’s entire surplus. As another example, a seller agent knows its owner’s
minimum acceptable price and keeps it secret, and a buyer agent starts bidding at zero and offers a sequence of
incremental bids until it gets the item for a price slightly more than the minimum acceptable price [16]. Thisis not to
the seller’s advantage. Both examples point to the need for negotiating agents to guard against strategies that extract
their private information. Finally, we should mention that, with eBay’s proxy bidding, one must reveal the highest
price one iswilling to pay, which gives the auction site information that could be used to cheat the bidder [9].
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Figure 1. Protocols, Strategies and Coordination in CONSENSUS

2.3. Protocols, Strategies and Coordination

As mentioned in Section 1, the basic components of automated negotiation systems are the protocol and strategies
[17]. The protocol defines how the interaction between the agents is to be carried out. The strategies specify the
sequence of actions the agent plans to make during the negotiation. In CONSENSUS, the protocol (i.e., the
negotiation rules) is communicated to the participant before she engages in the negotiation. A human negotiator
would just consult the protocol; a software agent would download it in a usable format (in XML for instance). On the
other hand, the strategies are the responsibility of the negotiator. A human negotiator would use her strategies to
make offers or to respond to her opponents’ offers; a software agent would do the same, based on the instructions
provided by its creator. In addition to protocols and strategies, we introduce a third component: coordination. Thisis
the information that the agents need in order to coordinate their actions whenever they participate in a combined
negotiation (See Section 1). Figure 1 shows our view of the three components.

2.4. The CONSENSUS Approach

Contrary to most existing approaches in which strategies are coded into negotiation agents, Su et al. use a high-level
rule specification language and GUI tools to allow human negotiation experts to dynamically add and change
negotiation strategies at run-time [18]. Each strategy is expressed in terms of an Event-Trigger Rule (ETR), which
specifies the condition to be checked and the actions to be taken by the negotiation server. Rules are activated upon
the occurrence of specific events during the negotiation process. An ETR server is used to manage events and trigger
rules that are relevant to the posted event.

A second approach, although not directly related to e-negotiations, is the work of Grosof et a. [19]. It is concerned
with the representation of business rules in contracts and it relies on the fact that many contract terms involve
conditional relationships, and can conveniently be expressed as rules. An example of a business rule is [20]: “If the
buyer returns the purchased good for any reason, within 30 days, then the purchase amount, minus a 10% restocking
fee, will berefunded.” A declarative approach called Courteous Logic (CL) was devised to represent the rules. CL is
an extension of ordinary logic achieved by adding the possibility to express prioritized conflict handling as rules.

Various other approaches are being explored to provide negotiating agents with an adaptive behaviour. They
include logic, case-based reasoning (CBR), and constraint-directed search [15]. The use of CBR, for instance, is



justified by the fact that negotiation skills in humans seem to come from experience [14]. Bayesian learning is also
used to make software agents learn negotiation strategies [20]. According to Kephart et al, agents should learn, adapt,
and anticipate, and in order to do so they will use a variety of machine learning and optimization techniques[1].

Inspired by the work of Su et al. [18] and Grosof at al. [19], we take a rather pragmatic approach to the issue of
negotiation strategies: we consider them as declarative knowledge that is given to the agents before and/or during the
negotiation process. Strategies such as: “if the bidding gets too intense, then abandon the negotiation”, “if there is
jump-bidding, then wait for further instructions’, or “if there are snipers, then snipe-back” can indeed be nicely
coded as rules. According to McClintock et al. [21], rules drive the activity in a software application by describing
the action(s) to take when a specified set of conditions is met. They can be coded as stand-alone atomic units,
separate from the rest of the application logic. Rule-based systems (RBS) are known for their advantages over other
software specification approaches. First, rules are at a relatively high level of abstraction, and are closer to human
understanding, especially by business domain experts who are typically non-programmers. Second, they are
relatively easy to modify dynamically [22]. It is widely recognized in modern software design that a vital aspect of
modifiability is modularity and locality in revision. New behaviour can be specified by simply adding rules, without
needing to modify the previous ones. Furthermore, rules can be augmented with procedural attachments (e.g., a Java
method) so that they have an effect beyond pure-belief inferring [23]. Furthermore, they are executable by custom-
made or off-the-shelf rule engines, and can be communicated over a network in adequate formats (XML for
instance).

/I If you are not leading and you have
not

reached your reserve price then bid.
Rule Rulel

When {?x: TheElement(iLead == false;

(highestBid+mylncrement)<=
myReservePrice);}
Then {modify? x
{action ="BID";}
}

/I If you are not leading and your bid is
greater then the reserve price, then quit.
Rule Rule2

When {?x: TheElement(iLead == false;
(highestBid + mylncrement) >
myReservePrice);}
Then {modify ?x
{action = "DROP";}
}

b

h
Figure 2: Proxy bidding in the JRules Syntax

The architecture of CONSENSUS [7] is built on ILOG JRules [24], an off-the-shelf rule engine. The rules are
written in a Java-looking syntax, making them relatively self-explanatory. Figure 2 shows two rules in the JRules
syntax that implement proxy bidding in an English auction. Rulel is triggered when the agent is trailing and its
reserve price is not met. In this case the agent places a bid equal to the actual bid plus the bidding increment. Rule2
enables the agent to quit the auction whenever its reserve price is met.

3. Coordination of Negotiating Agents

In this section, we define the need for coordination in CONSENSUS, present some approaches to solve the
coordination problem, and detail our own approach.

3.1. Background and Related Work

The interaction between agents can vary from simple information interchanges, to requests for particular actions to
be performed and on to cooperation (working together to achieve a common objective) and coordination (arranging
for related activities to be performed in a coherent manner) [25]. Multiple agents need to be coordinated for the
following reasons. preventing anarchy and chaos; meeting global constraints; distributing expertise, resources or
information; dealing with dependencies between agents; and ensuring efficiency [15].

In CONSENSUS, there is a clear need to coordinate the work of software agents (see Section 1). First, in a
situation where many agents participate in separate negotiations with the goal of purchasing only one item (e.g., they
engage in many concert ticket auctions with the goal of purchasing just one ticket), we need to make sure that only



one agent finalizes its deal, and that only the agent in the cheapest auction (i.e., the one with the smallest asking
price) is the one who bids. It is common in online auctions to forbid bidders from breaking their commitments. Thus,
if more than one winning agent end up winning their auctions, they would not have the possibility to retract, or at
best they would be allowed to do it, but penalized for it. Second, in a situation where multiple agents negotiate a
package of complementary items (i.e., there is no use for one item without the others), we need to make sure that al
the items or none are purchased in order to avoid exposure. Exposure occurs when we need many items, enter
negotiations for all items, and end up making a deal on some but failing to make a deal on others. Coordination in
CONSENSUS will be discussed further, but first, let us review some related work.

The Biddingbot [8] is a Multi-Agent System (MAS) that supports users in attending, monitoring, and bidding in
multiple auctions. Agents simultaneously monitor prices of the item in several auctions. The system consists of one
leader agent and several bidder agents, each one being assigned to an auction site. Bidder agents cooperatively gather
information, monitor, and bid in the multiple sites simultaneously. The leader agent facilitates cooperation among
bidder agents as a matchmaker, sends user requests to the bidder agents, and presents bidding information to the user.

Another system, designed at the HP Laboratory in Bristol, England, takes a different approach. Instead of a MAS,
it uses one single agent [9]. The agent participates in many auctions for one item, and coordinates bids across them to
hold the lowest bids. As auctions progress, and it is outbid, the agent may bid in the same auction or choose to bid in
a different auction. The algorithm used by the agent consists of two parts: (1) a coordination component, which
ensures it has the lowest leading bids possible; and (2) a belief-based learning and utility analysis component to
determine if it should deliberately lose an auction in the hope of doing better in another one later.

Not directly related to e-negotiation research, but highly relevant in the way it deals with coordination in MAS is
the ARCHON project [26]. Software agents are divided into two layers. an ARCHON Layer and an application
program. The former encapsulates generic knowledge about cooperation, which is domain independent and encoded
in terms of production rules. The latter is a special problem solving application, which performs the problem solving
process. Cooperation know-how is encoded in an ARCHON layer by rules such as the following: “ If an agent has
generated a piece of information, and it believes that it is of use to an acquaintance, then send it to the
acquaintance.” ARCHON separates cooperation knowledge from application knowledge, thus enabling generic
cooperation features to be reused for other applications.

3.2. The CONSENSUS approach

Inspired by the ARCHON approach, we treat coordination information as declarative knowledge, and represent it as
if-then rules which the agents exploit using an inference engine. Since our agents are already coupled with rule
engines (for their strategy component), it is convenient to use the same rule engine to execute the coordination. We
distinguish between strategy rules (described in Section 2), used to determine the action to take based on the
information about a particular negotiation, and coordination rules, which are used to determine the action to take
based on information about other negotiations (possibly combined with information about the negotiation itself).
Coordination as well as strategy rules have conditions that are built on the state of the agent, the amount (spent, to
spend, committed, remaining, etc.), the remaining time of the negotiation, the frequency of bids, etc.

Suppose we have two agents participating in separate negotiations with the goal of purchasing just one item. The
following rule ensures that the agents make no more than one commitment at the sametime: “ If Agent2 isleading or
in the process of bidding, then Agent1 should wait.” Figure 3 shows the same rule in the JRules syntax.

Note that this rule is too restrictive since an agent cannot make a bid if the other agent is leading (i.e., holds the
highest bid). Evidently, this should not always be the case. If breaking commitments is allowed in the auctions
(perhaps at a certain cost) the rule in question can be relaxed, and we may have the two agents leading at the same
time while making sure that one of them drops out of the auction before it istoo late.

Suppose now that we have two agents participating in separate negotiations with the goa of purchasing two
complementary items. The following rule minimizes the risk of exposure (see Section 3.1): “If Agent2 istrailing, and
its chances of making a deal are slim, then Agent1 should wait for further instructions.”



The intervention of the user in complex coordination situations should be permitted. When the agent cannot
determine the action to take, it can query the user using arule such as. “If condition, then ask the user.”

Finally, for practical reasons, we adopted a blackboard coordination approach where the agents post and read
from a general blackboard. Coordination rules are therefore triggered by information that the agents make available
in the blackboard. This approach is suitable only if the tasks are assigned, a priori, to the agents, if the number of
agents is small and if the agents share a common domain understanding. Evidently, all requirements are satisfied in
our case. Otherwise, the blackboard coordination scheme, with no direct agent-to-agent communication, would result
in a severe bottleneck.

/I 1f Agent2 is leading, or is in the process of bidding, then Agentl waits
Rule coordinatel

Priority = high;
When {
?y: TheElement(iLead == false);

Blackboard( ?b1: get("u2","iLead"); ?b2:
get("u2","iBid")) from getBlackboard(); evaluate(?b1l || ?b2);

}
Then { modify ?y
{ action = "DO NOTHING"}
assert logical BidBloc() {ref = new Integer (0);}

Figure 3: A coordination rule in the JRules syntax

4. Validation

In general, economists model an auction as a game with bidders playing against each other. The point of the gameis
to win the object at the lowest possible price; each bidder devises a strategy with this in mind [27]. An auction
strategy is often a function of: (1) the bidder’'s private valuation, (2) an estimate of the opponents vauation (if
available), and (3) the past bids of the opponents (if known). As this information changes, the strategy is updated
accordingly [28]. Along these lines, in order to validate our choice of representation for strategies and coordination,
we used our agent-mediated negotiation system (i.e., CONSENSUS) to conduct agent tournaments. Agents function
in repeated cycles we call pulses. A pulse is made of four steps as described in the following piece of code:
Repeat
Seep (p);
GetInformation ();
Think ();
Act ();
Until (State = winning or State = loosing or State = dropping)
The pulse’'s steps are:
Sleep (p): the agent goesto sleep for a period p that can be fixed or determined dynamically.
GetInformation (): the agent queries the server and updates its private information.
Think (): the agent applies the rules to determine the action to take.
Act (): the agent takes the appropriate action.
The agent sstates are;
Trailing: the agent does not hold the highest bid.
Bidding: the agent is in the process of making a bid.
Leading: the agent holds the highest bid.
Winning: the auction ended while the agent was leading.
Loosing: the auction ended while the agent was trailing.
Dropping: the agent quits voluntarily.
The actions the agent might take are:
Do nothing: take no action for the time being.
Bid (v): bid the amount v.
Drop: quit the auction permanently.



4.1. English Auction Tests

In an English auction, the participant has to decide whether or not to make a bid, how much to bid, and whether to
continue or to abandon the auction (see the actions above). Observing the opponents (asin real life auction houses) is
essential in taking such decisions, and by doing so, the participant gains two types of information: (1) how many
bidders have dropped out of the auction (since they have lower valuations than the current bid); and (2) a what
prices they dropped out [27]. Good strategies are also the result of correct predictions about the behaviour of the
opponents and sometimes that means guessing someone else's private information. Finally, it might be helpful for a
bidder to know if the opponents are symmetric (i.e., they use the same measurements to estimate their valuations),
and if they have secret information about the item [28]. Using the rule-based approach, we provided our agents with
common bidding strategies and made them participate i n bidding tournaments. Here are some of the results.

4.1.1. Optimal Bidding. Optimal bidding (also called proxy bidding) means bidding a small amount more than the
high bid until you reach your valuation and then stop. This strategy, described by the rules in Figure 2, has the effect
shown in Figure 4. The Agent and its opponents are provided with optimal bidding rules. The time is in seconds but
in redity, an auction like this might take a week to ten days. The winner (Agent in this case) is the one with the
highest valuation (i.e., reserve price).

4.1.2. Update Rate. Since online auctions take place over along period of time, it is difficult for the participants to
monitor the bidding process. The reasons are: (1) there is a cost every time you enter a bid because of Internet
connectivity cost; and (2) there is an opportunity cost associated with logging on, filling the form, and entering the
bid. An agent should not maintain a connection to the server at al times. It should optimize connections by
connecting only when it is relevant to do so, and should be able to determine rapidly whether or not the auction suits
its needs. Dropping out early means you can enter another auction early. Figure 5 shows our agent adjust its update
rate to the average bidding rate. At the start of the auction, it makes few interventions, and as the activity increases
towards the end of the auction, it participates more often (monitors the auction closely). Note that in this case, the
agent makes bids every timeit updates itsinformation, but thisis not an obligation.
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Figure 4: Optimal bidding Figure 5: Adjust update rate

4.1.3. Adapt Increment. In auctions where there no is minimum increment enforced by the server, we tak of
spontaneous bidding. In this case, it might be useful to observe the bidding process and adapt one’'s bidding
increment to that of the opponents. Figure 6 shows our agent doing exactly that.
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4.1.4. Jump Bidding. This strategy consists on entering a bid larger than necessary to become a leader, which sends
asignal to potential bidders. Jump bidding is credible because it is costly (i.e., money can be left on the table). The
sender and the recipient of the signal may be better off in ajump bidding equilibrium: the sender saves bidding costs
by deterring potential competition; and the recipient saves the costs of fruitlessy bidding against a strong opponent
[29]. Figure 7 shows our agent detecting ajump bid made by Player and deciding to quit. Some opponents continue
to bid but Player finally wins, as it was not bluffing. In Figure 8, our agent decides to respond with jump bids until
Player (and everyone else) quits. In Figure 9, our agent detects a jump bid, and decides to wait until bidding goes
back to normal before bidding again.
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Figure 8: Jump bid — Detect and respond

Figure 9: Jump bid — Detect and wait

4.1.5. Sniping. This strategy consists of waiting until the last minute before the auction ends, and trying to submit a
bid, which just barely beats the high bid and gives the opponents no time to respond. Obvioudly, if the auction closes
at afixed date, then what incentive does a bidder have to place any bids early in the auction? Submitting an early bid
is dominated by the strategy of submitting the same bid just before the auction ends. If al bidders were to follow the
sniping strategy, the game would become equivalent to a first-price sealed-bid auction, with al the bids submitted at
the end. In Figure 10 our agent snipes and wins. Figure 11 shows a sniping war between three agents.

To encourage early participation, a short extension period (five minutes for instance) might be added to the
auction. If there is bidding activity in the last five minutes of the auction, then the closing time will be extended by
an additional five minutes. The auction does not end until five minutes have passed without a new bid, which gives
bidders the opportunity to protect themselves against snipers. We intend to implement this feature into our auction

server and experiment with some strategies that take advantage of the extension period.

600 800

500
& 400 o _. 600 - ©Agentl
Ko P O Agent Ko = Agent2
@ 300 - L. e? @ 400 - o oo
2 200 _ - Opponents 2 200 | P X Agent3

100 - " - Opponents

0 ‘ 0 ‘
0 50 100 0 50 100
time (sec) time (sec)

Figure 10: Sniping and winning

Figure 11: Sniping war

4.1.6. Shielding. Bid shielding involves making artificia high bids. The bidder putsin an early low bid (say $10) on
an item, and then gets a friend (or afalse identity) to put in an extremely high bid (say $500) on the same item. The
high bid acts as a shield for the low bid, keeping anyone else from bidding. Just before the end of the auction, the
bidder retracts the $500 bid, leaving the $10 bid as the winning bid on an item that should have gone for a higher
price. Figure 12 shows Player 1 and Player 2 performing a shielding and Agent detecting the shield. Player 1 wins
after Player 2 retracts its bid. Agent could not continue bidding because the shield exceeded its valuation. In Figure
13, Agent detects a shield and waits for it to be removed to snipe and win.



4.1.7. Increase Valuation. It can happen that a bidder reconsiders her valuation of an item after observing how the
others bid on it. Figure 14 shows our agent increase its valuation when it sees that the possibilities of winning are
good. It does so when its reserve price is reached, the auction is about to close, and there are few participants
remaining. In the figure, the agent changes the reserve price from 600$ to 900$ and stays in the game to win.

4.1.8. Combination of Rules. It is possible to combine several strategies. Figure 15 shows the result of a“cautious”
behaviour combined with an “aggressive” one. The agent avoids jump bidding by entering a waiting state, and at the
end snipes and wins. Thisis away to hide your real intentions so that your opponents cannot guess your strategy.
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Figure 14: Increase valuation Figure 15: Detect jump bid & wait & Snipe

4.2. Dutch auction

In a Dutch auction, a bidder selects a cutoff price at which to claim the object so long as no one el se has already
claimed it. Usualy, al bidders have the same strategy, which consists of shading down their bids dightly below their
valuations. This means biding less than what you think the object is worth to avoid the winner’s curse (see Section 2)
[27]. No relevant information is disclosed in the course of the auction, only at the end when it istoo late. This makes
designing strategies a futile task. However, this is not the case with the multi-item Dutch auction. With many items
for sale, bidders can watch the progress of the auction, look at the transaction prices, the number of remaining items
(if available), the remaining time (if available), and decide whether to bid (bid in this case means to claim a number
of items at the current asking price), wait for the price to drop, or quit.
We designed a Multi-item Dutch auction as follows:

« Oneoremoreidentical items are put on sale and the unit price is made public.

e Astime passes, the seller decreases the unit price to generate interest.

¢ A buyer’sbid isthe quantity she wants to purchase at the current price.
The basic behaviour of our bidding agents in this case is not different from that of the English auction. Instead of
bidding a price, they bid a quantity of items. At the time of its creation, an agent is given the following information:
the number of items to buy, the minimum acceptable number of items, and how much the user vaues the item.
Simple bidding tactics were coded as rules and given to agents, and the agents were made to participate in Dutch
bidding tournaments. Here are some of the results.



4.2.1. Safe Buying. Asthe price keeps decreasing, when it equals your val uation, buy the minimum number of items.
Keep watching the auction, and before it closes, buy the remaining items (possibly at a smaller price that your

valuation). The effect of this strategy is shown in Figure 16 (right). The agent bought the 4 minimum items, and
later, 3 more items to reach its maximum number of 7.
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Figure 16: Multi-item Dutch Auction - Safe buying

4.2.2. Panic Buying. As prices go down, if you see that a big number of items have been sold, and if your valuation
is not reached yet, then it might mean that your valuation is too low. Adjusting your valuation up will permit you to
buy at least your minimum number of items even at a higher price. In Figure 17, the Agent buys the minimum 4
items needed. Therisk of missing the minimum number of itemsis small but the risk of thewinner’'s curseis high.
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Figure 17: Multi-item Dutch Auction — Panic buying

4.2.3. Patient Buying. Figure 12 shows our agent decrease its valuation using the following rule: “if the price
decrease rate is high, the selling rate is low, and you reach your valuation, then lower your valuation”. This strategy
might save the buyer from the winner’s curse as it helps get the item at a lower price. There is however arisk that
someone el se decides to buy all theitems just before our agent makes its move.
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Figure 18: Multi-item Dutch Auction — Patient buying

4.3. Coordination

Using the same setting as before, we made many agents participate in separate auctions at the same time, and used
the rule-based approach to manage their coordination.
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4.3.1. Coordination across two English auctions. We want two complementary items A and B. Agentl is launched
in an English auction for item A, and Agent2 in another one for item B. The agents negotiate separately, but they
coordinate their actions using coordination rules. Figure 19 shows one simple coordination scheme: “If Agentl (| eft)
detects a jump bid (i.e., the opponent is serious about winning and there is arisk that Agentl may loose its auction)
then Agentl must quit. In this case, Agent2 (right) must also quit to avoid exposure.”
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Figure 19: Coordination across two English auctions

4.3.2. Coordination across an English and a Dutch auction. We want either item A or item B. Agentl is launched
in an English auction for item A, and Agent2 in a Dutch auction for item B. Figure 20 shows the effect of the
following coordination scheme: “if the going price in the Dutch auction is lower than or equal the current bid in the
English auction, and your valuation is higher than the going price, then buy in the Dutch auction”, and “if the going
pricein the Dutch auctionis lower or equal to the current bid in the English Auction, then quit the English auction.”
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Figure 20: Coordination across an English and a Dutch auction
4.3.3. Coordination across three English auctions. For this test we have three agents Agentl, Agent2, and Agent3
participate in three English auctions for items B, C and A respectively. The auctions are independent. The agents and
their opponents are provided with optimal bidding strategies. The goal isto win "(B or C) and A", that is: items B
and A, oritems C and A. Since the three agents are launched in paralld, there is a need to coordinate them.

Figure 21 (left) shows the result of Agentl and Agent2 bidding in parallel. Only one of them isleading its auction at
the same time, and bids are aways made in the cheapest auction.

Figure 21 (right) shows Agent 3 quitting (its reserve price is met), causing Agentl and Agent2 (left) to quit.

Figure 22 (left) shows both Agent 1 and Agent2 loose their auctions (because they reached their valuations). At the
sametime, Agent3 (right) drops out of its auction.

Figure 23 shows Agent3 (right) snipe and win, and Agentl and Agent 2 (left) continue until Agent2 wins.

Figure 24 shows Agent 3 (right) engage in a sniping war and loosing to another sniper. Agentl and Agent2 (left)
have no choice but to drop out of their auctions.
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Figure 24: Agent3 snipes and looses, Agent1 and Agent2 drop out
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5. Conclusion

The aim of the paper was to demonstrate that we could capture a wide range of bidding strategies and bid
coordination schemes, using a rule-based approach, while supporting a wide spectrum of negotiation types. The well-
known advantages of rule-based systems are the modularity and the uniformity (knowledge is represented using the
same format). The possible inefficiency of rules and their eventual slow processing can be overcome by compiling
the rules. Graphical tools can also be used to browse the rule base in order to verify its coherence. We use a
blackboard coordination scheme for it is asimple and proven solution.

Basic behaviour of agents, various bidding tactics as well as coordination schemes across multiple auctions were
implemented using our representation. They were tested in agent tournaments within simulated markets. So far, the
results are encouraging and other possibilities are yet to be explored. We are in the process of evauating this
representation by testing its flexibility and seeking the limits of its expressiveness. As future points of interest we see
the following:

(1) It is no secret that rules are a hit restricted in their ability to be adapted automatically, as agents are usualy
expected to adapt over time to improve their performance. For now, our agents lack learning capabilities, but we will
investigate how our approach can lend itself to machine |earning techniques.

(2) Bid strategies usually involve fairly complex optimization a gorithms and forecasting that could not be expressed
directly as rules. We propose to make use of optimization algorithms and forecasting as procedura attachmentsin
the action part of therules.

(3) We have been considering negotiations where the only negotiable attribute is the price. In the case of a plane
ticket, for instance, the attributes could be the price, the date of the flight, the airports (departure and destination), the
class of the seat, etc. Coordination would be more interesting (and complex) if many attributes of the item were
negotiable (i.e., multi-attri bute negotiations).
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