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Karine Gobert†, Patrick González‡, Alexandra Lai§, Michel Poitevin** 
 

 
Résumé / Abstract 

 
Nous proposons un modèle permettant d'évaluer la fragilité financière d'un ensemble d'entreprises 
dans une économie autarcique. Une entreprise est associée à une suite aléatoire de rendements 
financiers. Une entreprise dont le rendement courant est négatif est dite en détresse et requiert un 
influx de capitaux pour survivre. Ces capitaux proviennent des entreprises avec des rendements 
courants positifs. Une entreprise en détresse est refinancée dans la mesure où ses besoins de capitaux 
ne dépassent pas la valeur escomptée des capitaux futurs qu'elle est susceptible de générer. Cette 
valeur dépend en retour de la possibilité pour l'entreprise de se faire refinancer dans l'avenir. Nous 
développons une méthode de calcul récursif afin d'obtenir cette valeur lorsque les flux de capitaux 
doivent satisfaire une contrainte globale de liquidités. Nous comparons l'allocation réalisée par une 
coalition centralisée des entreprises à celle qui résulte dans un marché concurrentiel où les 
entreprises sont refinancées sur la base de décisions décentralisées. Nous prouvons que l'allocation de 
marché est généralement inefficace et plus fragile parce qu'on y néglige la possibilité qu'une 
entreprise actuelle en détresse agisse à titre de prêteur dans l'avenir, i.e. que la valeur marchande 
d'une entreprise peut diverger de sa valeur sociale. 
 

Mots clés : fragilité financière, théorie de la valeur 
 
 
 

We construct a model of valuation to assess the financial fragility of a set of firms in a closed 
economy. A firm is identified with a possibly infinite random sequence of benefits. Firms with 
negative benefits in a given period are said to be in distress and need liquidity to refinance their 
projects. Those liquidities must be obtained from firms with positive benefits. Distressed projects are 
refinanced to the extent that their need for liquidity does not exceed their endogenous continuation 
value. This value is, in turn, affected by current and future refinancing possibilities. We provide a 
recursive procedure to compute this value when there is an aggregate liquidity constraint. We 
compare the allocation under a centralized coalition of firms with that of a decentralized competitive 
liquidity market. We show that the competitive market is inefficient and thus more fragile because it 
does not value the possibility that a currently distressed firm could become a provider of liquidity in 
the future, that is, the market value of a firm can diverge from its social value due to externalities 
involving the ability of that firm to refinance other distressed firms in the future. 
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1 Introduction

A system is financially fragile relative to another when its expected value in the steady state

is lower due to an inability to manage liquidity in a manner that is dynamically efficient. We

show that a decentralized mechanism for allocating liquidity is more fragile than a centralized

system due to a divergence between social and market values of firms when there is a potential

for aggregate liquidity constraints to bind in any period. A market mechanism is unable to

correctly value firms in terms of their ability to provide liquidity in the future, and hence

can allow a firm to go bankrupt even though it would be socially valuable to refinance it.

This is because the potential to be a liquidity supplier in the future increases the values of

other firms but this externality is not accounted for in the market value of firms.

Correctly valuing a firm (or a project) is a central issue in finance. The value of a firm

is typically equal to the expected discounted value of its future benefits, conditioned on its

survival. In the autarcic case where no refinancing is available, the firm will eventually go

bankrupt when there is a positive probability of distress, and the computation of its value

takes this probability into account. The probability of bankruptcy enters into the “effective”

discount rate. The difficulty in the computation of the value arises when refinancing is

potentially available but subject to an endogenous liquidity constraint. In a dynamic context,

the flow of future benefits in the firm is conditioned by the possibility of financial distress and

its ability to obtain refinancing in future periods, should it become distressed. Bankruptcy

is then endogenous to current and future refinancing possibilities, and the computation of

the firm’s value becomes a non-trivial exercise.

In an environment of perfect financial markets, there are no liquidity constraints facing

the firm as long as its value, net of its liquidity needs, remains positive. Firms are easy to

value in this world, and bankruptcy, when it occurs, is efficient. We present a model of firm

valuation when financial markets are imperfect. We focus on a limited aggregate supply of

liquidity as a source of market imperfection. A firm may not be able to obtain financing even

though it would be profitable to do so because the aggregate supply of liquidity is bounded.
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This assumption can limit the extent of refinancing a firm can obtain, and affect its current

value. In addition, current and potential liquidity constraints create a divergence in a firm’s

social and market value, which causes a decentralized market for liquidity to be dynamically

inefficient, or financially fragile.

In this model, a firm is identified with an infinite random sequence of benefits, conditional

on its survival. Each period, a firm realizes a net benefit. For example, this benefit represents

its cash flow consisting of revenues minus costs net of any new investment requirement. If

this benefit is below a threshold level (normalized to zero), the firm is in financial distress and

needs refinancing to pursue its activities. Without refinancing, it must declare bankruptcy.

If this benefit is positive, the firm can choose to either consume its benefits, or use it to

refinance a distressed firm.

We develop a procedure for valuing firms when there is a potential aggregate shortage

of liquidity. We suppose that there is no deep-pocket financier that could refinance all firms

whenever it is optimal to do so. Instead, we have a finite number of firms which can provide

financing to each other when they have the liquidity to do so. As long as the value of

a firm is greater than its liquidity needs, it is optimal to refinance it. This may not be

possible, however, if the other existing firms do not generate enough liquidity to refinance

the distressed firm. A firm may become financially vulnerable because the aggregate supply

of liquidity in the economy is low, and not because its net value falls below zero.

Within this context, we study two specific environments. In the first, we assume that

all firms are part of a coalition in which financing decisions are centralized to maximize the

value of this coalition. In each period, the set of surviving firms is chosen to maximize the

future value of the coalition of surviving firms. If there is an aggregate liquidity constraint,

some firms cannot be refinanced and must be shut down. The decision about which firms

should survive in this case depends on the marginal contribution of firms to the future value

of the coalition. This contribution depends on the ability of a given firm to “rescue” some

other firms in the future. We compute a specific two-firm example to illustrate our results.
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In the second environment, we assume that, instead of a centralized decision-making

mechanism, there exists a market for liquidity, and distressed firms must borrow on this

market at the equilibrium rate of interest. For each period, we characterize the equilibrium

interest rate that determines which firms are refinanced. These are the firms that have the

highest market value net of refinancing costs.

We then compare the efficiency of these two mechanisms. For each case, we show that

the economy converges to a stable coalition of firms, a set in which no bankruptcies can

occur. This limit set may be history dependent. More interestingly, we show that the

two mechanisms can produce different sets of stable coalitions. Any stable coalition in a

decentralized market is also stable in the centralized mechanism, but the converse is not

true. In a decentralized market, firms with the highest market value net of refinancing costs

are refinanced. This value, however, does not include the impact that the firm may have

on the future refinancing possibilities of other firms. When there is an aggregate liquidity

constraint that may bind in some future period, each firm has a shadow value that depends

on its potential for rescuing other firms in that period, that is, each firm has an externality on

the value of other firms.1 The market for liquidity cannot take this externality into account

while a centralized mechanism can. For example, suppose that firm A has a higher net

market value than firm B today, but that firm B is more likely to “rescue” from bankruptcy

firm C in the future (maybe because its returns are negatively correlated with those of firm

C). Suppose there is an aggregate liquidity constraint that prevents the refinancing of both

firms A and B. A central planner may prefer to rescue firm B than firm A if this increases

the value of firm C sufficiently. However, a decentralized market does take this externality

into account when computing firms’ value. In this sense, the market is not dynamically

efficient. This is why the market is more fragile than a centralized mechanism. We use a

simple numerical example to show how the market may fail to correctly compute firm’s true

value while a centralized coalitional organization would perform efficiently.

The issue of endogenous bankruptcy has already been studied in the literature on optimal

1This externality vanishes when there is no aggregate liquidity constraint.
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capital structure. Using a no-arbitrage argument, Merton (1974) computes the value of a

firm’s equity when its benefits follow a diffusion-type stochastic process. Merton (1974)

assumes that the firm issues a zero-coupon bond with maturity at time T . If the value of

assets is less than the face value of debt at T , the firm is bankrupt and the equity is worth

0. This makes the equity value resemble a European call option, which is valued using the

Black and Scholes’ (1973) formula. Merton’s formula per se does not consider bankruptcy as

an endogenous event. It can be used, however, to price any claim on a firm whose benefits

are described by a diffusion process.

Leland (1994) considers a more complex type of debt with a continuous coupon, and

computes the equity value when bankruptcy is either exogenous or endogenous. Bankruptcy

is exogenous when it is triggered by the assets’ value falling below a predetermined exogenous

target level. Bankruptcy is endogenous when it is triggered by the impossibility to pay the

coupon by issuing additional equity. In this case, there is a minimum value VB of the firm’s

assets below which equity is worth 0 and the firm is bankrupt. The firm chooses this lower

bound to maximize the total value of the firm. On the one hand, the lower bound VB must

be low enough to minimize the occurrence of bankruptcy; on the other hand, it cannot be too

low since equity must remain positive for a value of assets above the bound. Leland (1994)

finds that the lower bound VB on the value of assets that triggers bankruptcy is proportional

to the debt coupon, independent of the current value of assets, increasing in the risk-free rate

of interest and decreasing in the volatility of the assets’ value process. Leland (1994) assumes

that the firm can always refinance on the market as long as its equity value is positive. This

translates into an environment of perfect financial markets. In this model, bankruptcy is

said to be efficient.

Den Haan, Ramey and Watson (1999) also study the fragility of an economic system in

which there is an aggregate liquidity constraint. Borrowers and lenders are matched and,

in each period, lenders get a random liquidity endowment. The realized endowment affects

the viability of a match. The main difference of this paper from our approach is that they

assume that there is no short-run market for liquidity. Assuming that liquidities can flow
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across agents is a main feature of our analysis. We show that an economy may still be fragile

despite having a short-run competitive market for liquidities.

In Section 2, we introduce the model and notation. We then compute the value of a firm

in two benchmark cases: in autarky and when there is a deep-pocket financier who supplies

liquidity in each period. In the following sections, we assume that the aggregate supply of

liquidity is finite and given by the cash flow realizations of all firms in the economy. In

Section 3, we develop our centralized coalitional model and illustrate our results with a two-

firm example. In Section 4, we assume a decentralized market for liquidity in each period,

and characterize the market equilibrium. In Section 5, we compare the efficiency of the two

mechanisms and illustrate our results with a example. The conclusion follows.

2 The model

Consider a multi-period, single-good economy where all consumers have (risk-neutral) linear

preferences with respect to random consumption paths. They discount future consumption

by a common factor δ. Consumers are assumed to have rational expectations, that is, they

perfectly anticipate future prices contingent on available information and coordinate on the

same equilibrium if many equilibria can exist.

There is an infinite random sequence of i.i.d. states (st)t∈N where t is a time subscript.

Each state st is drawn from (S,S, µ) where S is a compact set of states, S is a σ-algebra on

S and µ is a probability measure. In what follows, the time subscript is dropped whenever

this does not create any confusion. Hence, s usually refers to the current state.

There are many productive projects, owned by the consumers.2 The number of projects

can decrease over time with the occurrence of bankruptcy. However, we forbid the entry

of new projects.3 Each period, projects generate random benefits measured in units of the

2In this paper, we use the terms “project” and “firm” interchangeably.
3Although this assumption simplifies the analysis, it is not crucial, in the sense that allowing the entry
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consumption good. A project is described by a measurable continuous function y : S → R

which relates each state, s, to the random benefit, y(s), the project generates in that state.

A negative benefit generated by a project represents a temporary shortage of liquidity

that prevents it from investing in its technology in order to continue to create value in the

future. A negative benefit that is not refinanced results in the bankruptcy of the project. We

assume limited liability so that if a project has a negative benefit and declares bankruptcy,

it forgoes its financial liabilities. A bankrupt project can never be reactivated so that if it

goes bankrupt in period t, it brings a benefit of zero in period t and all subsequent periods.

A positive benefit, on the other hand, creates excess liquidities that can be used to refinance

other projects or be consumed by the owners of the project. There is no storage technology

for transferring liquidities in the current period to a future period: all positive benefits

created in the economy must be used in the same period.

A project is said to be in financial distress in state s if y(s) < 0. We say that the project

is solvent in one period if its benefit is non-negative or if it can obtain refinancing to survive

until next period. Since there is no storage technology, refinancing can only be obtained

from positive benefits realized by other projects.4

Let us denote the current population of projects by y. If y is small, for instance if it

of new projects would not change the results qualitatively, as long as the entry of new projects does not

eliminate the possibility of the aggregate liquidity constraint binding in some states.
4Like the no-entry assumption, the no-storage assumption is made for tractability. In a closed economy,

savings does not take the form of storage but of investment that increases the productive capacity of the

economy. Hence, we assume that the capacity of the economy is somewhat fixed and we focus on real shocks

around a zero-growth trend. We conjecture that our results would be qualitatively unaffected if growth

was taken into account as long as the magnitude of shocks is related to the size of the economy: one can

reinterpret the (stationary) process of shocks y on the level of output of a given project as a (stationary)

process of shocks on its rate of growth. A project is then in financial distress in state s if its rate of growth

y(s) is smaller than −1. This approach commands to keep track of the various project sizes to account

for the total amount of good produced in a single period-state but, as the economy grows, the problem of

financing distressed projects in states of nature where not all projects can be rescued remains acute.
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contains two projects y = {x, z}, we denote it simply xz. For a subset z of the population y,

z(s) is the set of benefits generated by each project in z in state s. The sum of the elements

of z(s) is denoted by Σ z(s). Furthermore, z(s)+ is the subset of those benefits that are

non-negative, and z+
s is the subset of z obtained using the labels associated with the values

of z(s)+. z(s)− and z−s are defined the same way.

Autarky

A project that lives in complete autarky has no access to any refinancing. It is solvent if

and only if its benefit is non negative. The value of an autarcic project is then the expected

discounted sum of its current and future benefits taking into account that it goes bankrupt

whenever its benefit y(s) is negative. Up to a bankruptcy episode, benefits are stationary.

Hence, the continuation value is either zero if the project is bankrupt or some constant

non-negative expected discounted value if the project is solvent.

Let us denote by y+ (y−), the set of states in which y(s) ≥ 0 (y(s) < 0), that is,

y+ ≡ {s ∈ S|y(s) ≥ 0}, and y− ≡ {s ∈ S|y(s) < 0}.

We will keep this notation for any other measurable function on S throughout the paper.

Under the assumption of stationarity of the benefit function y, the value of the project only

depends on the current state, and may be defined as a random variable v0(y) : S → R,

v0(y)(s) =











y(s) + δV0(y) if s ∈ y+,

0 if s ∈ y−,

(1)

where δ ∈ (0, 1) is the discount rate. Let us denote V0(y) the expected value of v0(y).

Because benefits are stationary, this expected continuation value is constant. Hence, taking
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the expectation on (1) yields

V0(y) = E(v0(y))

= µ(y+) E(y + δV0(y)|y+)

=
1

1 − δµ(y+)
µ(y+) E(y|y+), (2)

where E(y|y+) is the conditional expectation of y given the event y+. Equation (2) yields

a formula for the valuation of a project that has a constant probability µ(y−) of becoming

bankrupt.

Unconstrained refinancing for a single project

Let us suppose that the project has access to refinancing in states where its current benefit

is negative, y(s) < 0. Refinancing the project makes economic sense if its continuation

value is greater than its current liquidity requirement −y(s). Thus, current and future

refinancing can increase the value of the project. This implies that the continuation value

itself is affected by the availability of refinancing in the future. Hence, the probability that

the project becomes bankrupt again in the future is not necessarily µ(y−), and V0(y) is no

longer the expected future value of the project.

Define by S∗ the set of states in which the firm is either not distressed or is successfully

refinanced, and, therefore, solvent. Since the decision to refinance is independent of current

financial liabilities and benefits are stationary, the set S∗ is time independent. Using similar

computations as those in the previous section, the expected discounted value of all future

benefits is given by
δ

1 − δµ(S∗)
µ(S∗) E(y|S∗).

This is the maximum amount of financial capital the firm can raise. Hence, the firm is

solvent in state s if and only if its net present value is non negative, that is

y(s) +
δ

1 − δµ(S∗)
µ(S∗) E(y|S∗) ≥ 0. (3)
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The set S∗ is the set of states s for which condition (3) is satisfied. It is easy to see that,

if s ∈ S∗, then all states s′ such that y(s′) ≥ y(s) are also in S∗. This implies that there

exists some lower bound y∗ below which the firm is optimally bankrupt. The lower bound y∗

must be negative, because it is never optimal to declare bankruptcy when the current benefit

is nonnegative. The set of solvency states is given by S∗ = {s ∈ S|y(s) ≥ y∗} = (y − y∗)+.

The lower bound y∗ solves

y∗ +
δ

1 − δµ((y − y∗)+)
µ((y − y∗)+) E(y|(y − y∗)+) = 0. (4)

This equality implicitly defines the set S∗.

We can now compute the expected value of the project, using y(s) < y∗ as the bankruptcy

condition. In any period and state s, we have

vy∗(y)(s) =











y(s) + δVy∗(y) if s ∈ S∗,

0 if s ∈ S \ S∗.

(5)

Taking expectations on (5) yields

Vy∗(y) = E(vy∗(y)),

= µ(S∗) E(y + δVy∗(y)|S∗),

=
1

1 − δµ(S∗)
µ(S∗) E(y|S∗). (6)

Equation (6) gives the expected value of the project in an environment without liquidity

constraints. For y(s) ≥ y∗, it is profitable to keep the project operating. Bankrupting it

would destroy value since its future value is larger than the amount of liquidity required to

keep it solvent. For y(s) < y∗, it is optimal to bankrupt the project since its future value is

smaller than the amount of liquidity required to keep it solvent.

Without an aggregate liquidity constraint, a project can raise funds up to its discounted

expected value taking into account the probability of bankruptcy. The value Vy∗(y) can be

compared to the autarcic value V0(y), which corresponds to the case y∗ = 0. It is easily
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shown that Vy∗(y) ≥ V0(y), and therefore the availability of outside liquidity raises the value

of the project.

Refinancing firms in the face of aggregate liquidity constraints

From now on, we relax the assumption that there is no aggregate liquidity constraint. We

suppose instead that liquidities have to be supplied by existing projects and hence cannot

exceed the sum of positive benefits in the economy, Σy(s)+. Therefore, a project must rely

on other projects’ liquidities to refinance a negative benefit. The availability of refinancing

for a project also depends on the demand for liquidity by other projects. This means that

there might be some states where a given project should optimally be refinanced but may

not be, due to a shortage of aggregate liquidity. The survival of a project then depends on

the aggregate liquidity of the economy. This means that the value of a project y is no longer

equal to Vy∗(y).

For example, there may be states s and s′ such that y(s) = y(s′) but the project is

solvent in state s and bankrupt in state s′ although its current liquidity requirement and

future expected value are the same in both states.5 Liquidity constraints may bind at the

aggregate level so that states s and s′ differ in the sense that it is easier for the project to get

refinancing in state s than in state s′. Hence, liquidity constraints increase the probability

that a project becomes bankrupt and reduce its value.6 This is important since when a

project goes bankrupt, the aggregate flow of liquidity in the future is reduced. This could

jeopardize the solvency of other projects in the future.

The determination of which distressed projects go bankrupt when there is not enough liq-

5Since a state s is a description of the whole economy, it is conceivable that a project may have the same

benefit in two different states, while benefits of other projects differ in these two states.
6To a large extent, our model fits this story: exogenous shocks on the total supply of funds affect the

“effective” discount rate different projects face since they affect their probability of bankruptcy. This can be

contrasted with standard macroeconomic models where changes in the “effective” discount rate are driven

by exogenous technological shocks.
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uidity for all of them depends on the allocation mechanism. In the next section, we compute

project values when aggregate liquidities are optimally allocated by a central planner. The

optimal allocation maximizes the value of the group of projects surviving in each possible

state of nature. In section 4, we decentralize the allocation of funds so that projects can

obtain funds from a liquidity market at a competitive price.

3 A centralized model of refinancing

The ability of projects to obtain refinancing is limited by the aggregate constraint on the

supply of liquidity. We derive a recursive formula to compute the value of a coalition of

projects. A coalition is a finite set of projects belonging to a network and providing each

other with liquidities. Our approach is to maximize the current expected value of the coali-

tion’s liquidities. This is done through a complex financial “contract” that optimally assigns

realized liquidities to a surviving coalition.

3.1 The coalition model

We take the convention that y denotes the current coalition before the realization of the

state of nature in any period. Since there is no entry of new projects and not all projects

survive from one period to the other, the existing population may decrease with time. A

coalition y faces a liquidity constraint in a given state, if the sum of all positive liquidities in

the coalition is lower than the sum of requirements by distressed projects that are “worth”

saving. In this case, only a sub-coalition of y can survive and some projects must disappear.

The coalition optimally designs a survival policy that determines which project should be

refinanced and which should be bankrupted. The coalition z that survives after coalition y,

and realization of state s, is feasible if and only if it satisfies the following two properties.

Admissibility (AD): If a project y has a non-negative benefit in state s, then it must belong
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to the surviving coalition in state s. Equivalently, if z is the surviving sub-coalition in

state s, then y+
s ⊆ z.

Budget Balance (BB): If coalition z survives in state s, then

Σ z(s) ≥ 0.

In any given state s, admissibility requires that all projects in the set y+
s survive. Budget

Balance ensures that the surviving coalition satisfies the aggregate liquidity constraint. This

is possible if and only if the total liquidity requirement −Σ z−s (s) of these distressed projects

in the surviving coalition, z, does not exceed the total liquidity Σ z+
s (s) generated by the

projects with positive benefits.

The optimal survival policy maximizes the value of the surviving coalition. It is thus

necessary to compute the value of all possible coalition of projects. Suppose that we know

how to compute the expected value of an arbitrary coalition of projects z of size less than

or equal to M ≥ 1. Let V (z) be this expected value. In what follows, we show how to

compute the value of an arbitrary coalition y of M + 1 projects. Let 2y be the power set

of sub-coalitions of y. Assume that the current set of active projects is y. In state s, an

optimal survival policy selects a coalition that solves

Program 1 : max
z∈2y

Σ z(s) + δV (z),

s.t. y+

s ⊆ z, (AD)

Σ z(s) ≥ 0. (BB)

This problem is well defined by assumption, up to V (y) which is unknown, that is,

the expected value V (z) of all subcoalitions z of no more than M projects is known by

assumption, but the expected value of the (current) coalition y of M +1 projects is unknown.

By admissibility (AD), for all states s such that y−
s is empty, the set of instruments

contains only y and Program 1 reduces to
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Σy(s) + δV (y). (7)

Consider now the states for which y−
s is not empty. The following restricted program,

for which y is not a solution, is well-defined,

Program 1a : max
z∈2y

Σ z(s) + δV (z),

s.t. y+

s ⊆ z, (AD)

Σ z(s) ≥ 0, (BB)

z 6= y.

By construction, we know how to solve Program 1a since V (y) need not be evaluated.

Program 1 can be represented as a dynamic program where, if y−
s is non-empty, one

decides first if y should survive and, in the case where it should not, which coalition z

should survive. Define the random variable ν : S → R that takes the value of Program 1a.

The value v(s) of Program 1 then becomes

v(s) =



























Σy(s) + δV (y), if y−
s = ∅,

max {Σy(s) + δV (y), ν(s)} , if y−
s 6= ∅ and Σ y(s) ≥ 0,

ν(s), otherwise.

Since this is a stationary value, V (y) = E(v).

Now let

S∗ = {s ∈ S|Σy(s) + δV (y) ≥ ν(s) and Σy(s) ≥ 0} .

This is the set of states where the full coalition y survives, either because y−
s is empty, or

because it is feasible and profitable to refinance all distressed projects. In what follows, we

assume that µ(S∗) ∈ (0, 1). The following lemmas describe the solution. All proofs are

relegated to the Appendix.

Lemma 1. {s ∈ S|y−
s = ∅} ⊆ S∗ ⊆ {s ∈ S|Σy(s) ≥ 0}.

14



Lemma 2. Monotonicity. Let s ∈ S∗ and consider s′. If, for all projects, y(s′) ≥ y(s), then

s′ ∈ S∗.

For any given y, the value of the coalition y, is the real number V (y) that solves (8)

V (y) = max
S∗∈S

µ(S∗)(E(Σy|S∗) + δV (y)) + (1 − µ(S∗)) E(ν|S \ S∗). (8)

We have shown in section 2 that a coalition composed of a single project (y = y) has

an expected value of V (y) = V0(y). We have shown that if we know how to compute the

expected value of M projects or less, we may compute the value of M + 1 projects. By

induction, we can therefore compute the expected value of an arbitrary but finite coalition

of projects. In the next section, we do so explicitly for a coalition of two projects.

3.2 A two-project coalition

Let y = xz and let y refer to either x or z. We know that V (y) = V0(y). We want to

compute V (y). To do so, we need to identify S∗.

By Lemma 1, we need only to identify those states where only one project is distressed

and it makes economic sense to refinance it. If z(s) > 0 > x(s) and x(s) + z(s) ≥ 0, then

project x will be rescued if

x(s) + z(s) + δV (y) ≥ z(s) + δV0(z),

that is, if

x(s) ≥ δ(V0(z) − V (y)) ≡ x∗∗.

Hence, both projects remain solvent as long as Σy(s) ≥ 0 and each y(s) is at least equal

to some endogenous stationary value y∗∗ that depends on V (y). V (y) may be obtained as

the solution to (8) where

S∗ = {s ∈ S|x(s) ≥ x∗∗, z(s) ≥ z∗∗ and x(s) + z(s) ≥ 0}.
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Notice that y∗∗ being independent of s is an artifact of the two-project coalition. In

general, this threshold value depends on the state s. For example, suppose there are three

projects w, x and z. Further assume that only one project is solvent (say project w) and that

it can only refinance one of the two distressed projects. Whether say project z is refinanced

or not depends not only on the net future payoff of doing so (as it is the case with two

projects), but also on the cost of bankrupting project x. This cost depends on the current

amount of liquidity needed to refinance project x. Hence, survival rules may depend on the

state s for a coalition of three or more projects.

Finally, it is now possible to isolate the individual value of a single project within coalition

y. Denote the value of project y ∈ y by

V y(y) =
µ(S∗ ∪ Sy) E(y|S∗ ∪ Sy) + µ(Sy)δV0(y)

1 − δµ(S∗)
,

where Sy is the set of states for which only project y is solvent. This value is the discounted

expected sum of returns from project y within the coalition y. It is bounded below by the

value of the flow of returns that can be realized in autarchy; that is V y(y) ≥ V0(y). It

depends implicitly on the value of the whole coalition through its dependence on the set S∗.

Individual values are such that V x(y) + V z(y) = V (y).

The individual value of a project x must be distinguished from the contributory value of

x to coalition y. The contributory value is the difference of values between the coalition y

with the project x and the coalition without it, that is,

CV x(y) = V (y) − V (y \ x) = V (y) − V0(z) = −δ−1x∗∗

where y \ x is the remaining coalition after removing project x from the coalition y. The

sum of the two contributory values in the coalition y exceeds the value of the coalition, or,

CV x(y) + CV z(y) = 2V (y) − V0(x) − V0(z) ≥ V (y).

The contributory value of a project exceeds its individual value: CV (x) = V (y)−V0(z) ≥

V (y) − V z(y) = V x(y) since V0(z) ≤ V z(y). Each project, therefore, has a shadow value

that reflects its externality on the value of the other project.
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4 Decentralization

We now decentralize our coalition economy to examine the characteristics of the surviving

set of projects when refinancing can be obtained from other projects at a market price. We

first propose a static general equilibrium model with a liquidity market for an economy with

an arbitrary number of projects. We then proceed to a dynamic general equilibrium analysis

in a four-project economy.

4.1 The liquidity market

A project may enter a period with an obligation to repay a debt or a claim on the debt

repayment from its participation in the liquidity market in the previous period. Suppose

that a project with a negative benefit today has lent the amount x in a previous period7

that entitles it to receive Rx today. Suppose that Rx > −y. In this case, the project’s net

liquidity is y(s)+Rx > 0. Nevertheless, if the project’s owners decide to use the amount Rx

to rescue their project, they are lending the liquidity to themselves. An alternative option

would be to let the project die and invest Rx on the liquidity market. Hence, whether it is

used by the project to refinance itself or invested in another project, the amount Rx is part

of the supply of fund, and the amount −y(s) potentially becomes part of the demand for

funds. Likewise, all debt repayments made in this period become part of the supply of funds

while the demand for funds is driven by projects with negative realizations of y.

7To unclutter the notation, the reference to the current state s is omitted in this section; hence y(s) is

simply noted y unless it leads to confusion.
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Figure 1: Equilibrium on the Liquidity Market.

As we have argued above, we may assume without loss of generality that each project

enters the liquidity market with either a nonnegative supply of funds y ≥ 0, or an input

requirement y < 0 and a nonnegative future (option) market value Vm(y) ≥ 0 of keeping the

project alive for the next period. We shall assume here, as a first step, that this value is

independent of the current price of funds R > 0. We consider the relevant case where at least

one project has a positive cash flow y > 0. The financial instrument exchanged by projects

for current funds on this market is generic. It could be a share in the project or a promise of

a future payment (we refer to it as “future funds” below). Since all agents are risk neutral,

the equilibrium risk premium is necessarily zero. Consequently the value of every financial

instrument is equal to its expected discounted payoff measured in units of the good.

The risk free (gross) rate R, the price of current funds, determines the current solvency

of projects. Consider Figure 1 where the positions for seven-project economy are drawn. We

will refer to each project by its current cash flow y(s); for instance, project −14 (point a)

has the highest future expected value Vm(y). There are five distressed projects (−14, −12,

−8, −6 and −4) and two projects with positive cash-flows (10 and 16). A distressed project
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Figure 2: Aggregate Excess Demand.

(for which y < 0) is solvent if it has a nonnegative value at the ongoing rate of return

y + Vm(y)/R ≥ 0,

or equivalently

Ry + Vm(y) ≥ 0.

Hence, to be solvent a project must belong to the half space above the line of slope −R that

goes through the origin (the line that goes through point c in the figure). Whether or not

a distressed project is solvent depends on R. For instance, given R, project −8 is (barely)

solvent but a higher R would leave it bankrupt. Given R, project −6 and −12 are bankrupt

but would manage to avoid bankruptcy if R was much lower.

To meet the input requirement, that is gathering funds x such that y + x ≥ 0, or more

generally to maximize the shareholders’ wealth, the manager of a solvent project can sell

equity or borrow using the equity as collateral. The maximum amount of (current) funds

that can be gathered is Vm(y)/R (the discounted expected value of the option of having the
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project at the beginning of next period). This financial operation is resumed by a change from

y to x in his holdings of funds and a change from Vm(y) to v in the value of the shareholders

portfolio (net of current dividends) such that the total wealth of the shareholders remains

the same (no arbitrage)

Rx + v = Ry + Vm(y).

The manager of a solvent project can thus take any position (x, v) such that x ∈ [0, y +

Vm(y)/R] and v = Ry + Vm(y) − Rx. This yields a kind of “budget line” of slope −R that

is drawn in the positive quadrant for each solvent project (see the figure).

The manager orders two positions (x, v) and (x′, v′) in the plane, where x are funds

available today and v an expected value that can be realized tomorrow, according to the

shareholders time preferences which are parameterized by the psychological discount rate δ.

Hence (x, v) � (x′, v′) if x + δv ≥ x′ + δv′. These linear preferences yield a map of linear

indifference curves of slope −δ−1 that are sketched in the figure with dashed lines.

Given these linear preferences, the demand for current funds of each manager is easy to

compute. If R = δ−1, the demand correspondence of each project is confounded with its

budget line. If R > δ−1, each manager wants all value in future funds. This implies that all

projects end up at the intersection of their budget line and the vertical axis. If R < δ−1,

they want all value in current funds, that is, they want to be at the intersection of their

budget line and the horizontal axis. For instance, given R > δ−1 in the figure, project −14

wants to move from a to a′ while project 10 wants to move from b to b′, both on the vertical

axis.

All bankrupt projects have a negative current market value and are thus those that have

the lowest current market value. This does not imply that a bankrupt project necessarily

has a negative social value; for instance, if there was another project at point d in this

economy, then R would be lower (because of an increased supply of funds) and project −12

could be saved if y + RVm(y) > 0 for that project. This is not per se a case of economic

inefficiency because the liquidity constraint is real so that the real social value should take
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into account the feasibility of keeping projects −12 together with −14, −8 and −4 when

there is no project at point d.

We now derive the equilibrium on the liquidity market. Define Ry(s) = −Vm(y)/y(s)

as the highest price at which the project is solvent with the convention that y is solvent

at any price if Ry(s) ≤ 0. At that price, the expected value of project x equals the value

of its current input requirement. To ensure upper hemicontinuity of the excess demand

correspondence (see below), we must explicitly account for the option to shut down such a

barely solvent project. Hence, define Z0
y(R) as a the correspondence

Z0

y(R) =











{0} if R = Ry(s),

∅ otherwise.

Let B denotes the bankruptcy event, that is B is true if 0 < Ry < R. Let Zy : R+ → R be

the excess demand correspondence for current funds of project y

Zy(R) = Z0

y (R) ∪







































{0} if B,

{−y} if not B and R > δ−1,

[−y, Vm(y)/R] if not B and R = δ−1,

{Vm(y)/R} if not B and R < δ−1.

Aggregate excess demand is Z(R) =
∑

y
Zy(R). Figure 2 illustrates such a correspon-

dence. At small R, every project is solvent and every project is on the demand side of the

market. As R increases, the discounted expected value of each project decreases so that,

by a simple wealth effect, the demand for funds decreases. A downward jump marks the

bankruptcy of some project. The size of the jump matches the input requirement of the

bankrupt project. The vertical section at price δ−1 marks the indifference of allocating funds

at that price that matches exactly the consumers’ preferences. The top extremity does rep-

resent the maximum demand of all solvent projects, constrained by their future value; and

the bottom part represents the maximum supply of all solvent projects given that some of

these projects do consume funds to meet their input requirement. If R > δ−1, all projects
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want to be on the supply side of the market if they can. When R increases, some projects

eventually become bankrupt and the demand decreases since they cease to demand their

input requirement. If the price is high enough, all distressed projects are bankrupt and the

excess demand is an horizontal straight line at a level matching the total amount of funds

in the economy.

The excess demand of each project y can be unambiguously (if R 6= δ−1) decomposed

in two parts, demand XD
y (R) and supply XS

y (R), one of these being zero, so that Zy(R) =

XD
y (R) − XS

y (R). Formally, define

XD
y (R) = max{0, Zy(R)},

XS
y (R) = −min{0, Zy(R)},

where we implicitly assume that a given value has been selected in Zy(R) if R = δ−1.

Aggregate demand and supply for current funds follow readily:

XD(R) = Σy XD
y (R),

XS(R) = Σy XD
y (R).

Let y(R) be the subset of distressed but solvent projects. Notice that when R > δ−1

XD(R) = −Σy(R), (9)

XS(R) = Σy+. (10)

Furthermore, these values certainly belong to XD(R) and XS(R) when R = δ−1. Hence,

for simplicity, we shall assume that, unless otherwise specified, these shall be the value of

aggregate demand and supply at that price.

Equilibrium

By Walras Law, it is sufficient to find an equilibrium in the market for current funds to get

a general equilibrium. Hence, we are looking for an equilibrium price R that equalizes the

aggregate market demand and supply for current funds.
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Since demand may be discontinuous (see Figure 2), our notion of an equilibrium must

account for an excess supply at the “equilibrium” price R. As we shall see, the behavior

of the model depends crucially on the total demand that can be accommodated by the

market. An excess supply of funds only affects the timing of consumption but has no effect

on the overall performance of the economy. Consequently, we devise a rationing device that

regulates an excess supply to yield an equilibrium on the market.

The device works as follows. Potential suppliers in the market are told that if there is a

strictly positive demand, an unspecified fraction α ∈ [0, 1] of their supply will be channeled

through the market. The rest of their supply will be returned for consumption. Notice that

the supply of funds is unaffected by this device: if supplying X was optimal when the price

is R and α = 1, then supplying X is still optimal when α > 0, and is of no consequence if

α = 0. Once XD(R) and XS(R) have been expressed at an equilibrium price (to be defined

below), the parameter α is set by the market operator to a value that clears the market:8

α = XD(R)/XS(R).

The set of equilibrium prices is defined to be

argmaxR Z(R) s.t. Z(R) ≤ 0.

Up to this point, our analysis is of a purely static nature because it is assumed that the

future market values Vm(y) are independent of R. This is not generally true since when R

is raised, the set of (surviving) solvent projects shrinks, and that may affect the value of

these projects in the future. To tackle this question in a satisfactory manner, we need a full

dynamic analysis. This is done in the next section with a four-project economy.

8When R > δ−1, aggregate supply is positive XS(R) = Σy+ > 0. When R = δ−1, individual supplies

may be selected so that XS(R) > 0.
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5 Static and dynamic efficiency

Since the value of projects, and hence the survival rule, depends on whether liquidities are

allocated by a central planner (centralized mechanism) or through a decentralized liquidity

market, the allocation mechanism can condition the fragility of the system. To compare the

performance of both mechanisms, we need to be able to compare the set of existing projects

in each case, after a given history of realization of the states of nature. A natural point of

comparison is the coalitions arrived at in the steady state under the two mechanisms. We

will explain the notion of fragility more clearly when we have defined the concept of a steady

state.

Let yt be the coalition of projects in period t. As the history of shocks evolves, this coali-

tion shrinks if some projects become bankrupt. Hence, the number of surviving projects

weakly decreases through time until a stationary state is reached. Let us define this station-

ary state with the notion of a stable coalition.9

Definition 1 (Stable coalitions). Let yt be the existing coalition in the beginning of period

t. The coalition yt is stable if and only if it is the surviving coalition after any realization of

the state of nature in this period.

A stable coalition defines the stationary state because states of nature are drawn from

identical and independent distributions in every period. If a coalition survives through all

states in one period, it must survive in any state in the future.

There are two necessary conditions for a coalition y to be stable. One condition is that

budget balance holds in every state of nature, that is, there is no state in which the aggregate

liquidity constraint is binding. The other condition is that no project has to be bankrupted

in any state of nature. This latter condition differs according to whether the mechanism is

centralized or not.

9Note that the term coalition in this context does not imply that the allocation mechanism is centralized.

The term applies to any group of projects supplying funds to each other as defined earlier.
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Definition 2 (Stable coalition with a centralized mechanism). With a centralized

allocation mechanism, y is a stable coalition if and only if y is feasible and there is no

smaller coalition that would have a greater value in any state of the world. Formally, y is

stable if and only if, for all s ∈ S,

y ∈ argmax
z∈2y Σ z(s) + δ E(V (z)), s.t. y+

s ⊆ z, and Σ z(s) ≥ 0.

Definition 3 (Stable coalition on a decentralized market). With a decentralized allo-

cation mechanism, y is stable if and only if, there exists a set of stationary contingent prices

R(s) such that the market for funds clears at these prices and every project in y is solvent.

Formally, there exists R such that for all s ∈ S,

R(s) ∈ argmaxR Z(R) s.t. Z(R) ≤ 0,

and

R(s) ≤ Ry(s) ∀y ∈ y−.

This definition is tricky because the critical prices Ry(s) for project y are endogenously

derived from its expected discounted market value. Nevertheless, if the existing coalition of

projects is stable, the aggregate liquidity constraint never binds and, thus, the market gross

rate of return can be set as low as δ−1 in every state. Hence, a necessary condition for a

coalition y to be stable in a market equilibrium is that every distressed project is always

refinanced at that price.

In accordance with both these definitions, we can say that the empty set is stable. This

means that at least one stable coalition exists.

Since there is no entry, the number of projects in the economy can only weakly decrease

in time. However, the rate at which projects disappear and the characterization of the stable

coalition depend on the history of states of nature. This means that project failures that

follow temporary liquidity shocks may have permanent effects. With no entry of projects in
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the system, a failure in period t may trigger further failures in the future. Suppose that the

set of stable coalitions achievable by a given allocation mechanism includes sets other than

the empty set. We can say that a system is fragile because the history of realized states can

force the system towards a less valuable stable coalition. In the extreme, a system can be

forced towards the empty set. Furthermore, since all firms that belong to any stable coalition

would have had an episode of distress but was refinanced, they all have positive value, both

in the individual and contributory sense. Hence, the stable coalition with the larger number

of projects is more valuable than one with a smaller number of projects.

The set of states in which all projects survive in a stable coalition is the set S itself since

there are no bankruptcies. The value of a coalition is then simply equal to the discounted

expected value of the cash-flows of all remaining projects in the centralized as well as in the

decentralized mechanism,

V (y) =
E(Σy)

1 − δ
.

As it was previously stated, projects are also easy to value in a decentralized market when

we have a stable coalition, since their individual values can also be expressed as the expected

discounted value of their cash-flows at price δ−1. Hence,

Vm(y) =
E(y)

1 − δ

for all projects y in a stable coalition.

Result 1. If y is a stable coalition in a decentralized market, then it is stable in a centralized

mechanism.

Proof for this Result is given in the Appendix.

Result 2. If y is a stable coalition in a centralized environment, it may not be stable in a

decentralized one.

This result is illustrated by an example. Consider a simple economy with four projects

{w, x, y, z} and three equiprobable states of nature 1, 2 and 3. Table 1 shows the benefits
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s : 1 2 3

w : 3 0 2

x : 2 X −3

y : −1 Y −1

z : −2 0 2

Σ : 2 X + Y 0

Table 1: A Four-Project Economy

of each project and their sum Σ in each state of nature s. Assume that the discount rate

is 1 ≥ δ ≥ 1/2 so that δ−1 ≤ 2 and that X ≥ 10 and Y ≥ 5. These bounds ensure that

refinancing both projects x and y is an efficient option (see below). We shall consider two

cases: case 1 where 3Y > X + 5 and case 2 where 3Y ≤ X + 5.

Since the sum of the returns is always positive, the coalition wxyz can survive in every

state. If X and Y are high enough, it is efficient to rescue project y in state 1 and projects

x and y in state 3. Rescuing project x in state 3 can only be done by rescuing project z

in state 1. If X is large enough, it is socially efficient to rescue project z in state 1 so that

project x can be rescued in state 3 in a future period. We then conclude that an efficient

allocation of funds must manage to have wxyz in all events. This is the stable coalition that

would prevail in a centralized mechanism.

We show that in this economy, the First Welfare Theorem does not hold: project z

will not be refinanced in state 1 although it would be socially efficient to do so in order to

refinance x in state 3.

Depending on the relative values of X and Y , we obtain two possible equilibrium allo-

cations following the bankruptcy of project z in state 1. To resorb the liquidity shortage

in state 3, the price of funds will raise so that refinancing x is not an attractive option. In

case 1, the expected value of project x is small so that a small raise in the market price will

be sufficient. With such a small raise, refinancing y is still an attractive option. Hence, the
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initial demise of project z implies that only project x goes bankrupt leaving wy as a stable

market coalition in the long run. In case 2, the demise of project z will again eventually cause

the bankruptcy of project x but the market price necessary to drive x out of the market will

also leave project y bankrupt leaving w as the long-run stable market coalition.

Rational expectations market prices clear current and future time/state contingent mar-

kets given the coalition of project that pertains to these contingent markets. Notice that

project w is always solvent so that it belongs to any surviving coalition of projects and forms

by itself a stable market coalition. Coalition w should not be interpreted as a monopoly

since it could be the sum of returns of a large group of projects each having a non negative

return in every state.

To construct an equilibrium, we specify a price for funds in every contingent market such

that the decision to refinance or not each distressed project is rational given these expected

prices and such that each contingent market for funds is in a (possibly rationed) equilibrium.

For instance, notice that, whatever the short-run composition of the market (with project

w present), the market for funds is in equilibrium at price R = δ−1 in states 1 and 2 since

there is no shortage of funds and suppliers of funds are ready to supply any amount that

they own at that price.

A shortage of funds will occur in state 3 once project z has been dropped in state 1.

Project z is dropped in state 1 because if the future is discounted, it is not rational to spend

today two units of consumption to refinance a project that has a zero expected value. Hence,

to have an equilibrium in state 3, the price of funds will raise to some price ρ > δ−1.

Since there is a finite number of projects, there is a finite number of stable market

coalitions we may end up with. Given the (long-run) stationary nature of our economy and

starting with a stable market coalition, setting R = δ−1 in every event yields an equilibrium.

Hence, we need only to analyze the transition from the starting coalition wxyz to some

stable coalition. We proceed with backward induction, starting with the smallest possible

candidates. Except for w, these must be multi-project coalitions since all other projects need
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Figure 3: Coalitions wxyz and w

refinancing in some state of the world and would disappear if they were to operate on their

own.

The possible stable market coalitions are wxyz, wxy, wxz, wyz, wx, wy, wz and w.

We construct the equilibrium using Figures 3, 4, 5 and 6. These trees provide a complete

description of the equilibrium. Starting with coalition wxyz in Figure 3, Nature selects either

one of the three possible branches (states) to reach some node associated to a contingent

market. The equilibrium market price in that state is written above the node (those will

be established later). The market structure then evolves by possibly dropping some project

along the way. The actual equilibrium selection of projects is indicated by the straight line.

For instance, starting with wxyz in state 1 (Figure 3), the market price is δ−1, project z

is dropped and we end up at the node wxy. To follow the rest of the event-tree, we then

switch to Figure 4, etc. A stable market coalition is one where we always end up with the

same coalition. Coalitions w in Figure 3 and wy in Figure 6 are stable in that sense.

In case 1, the left tree of Figure 4 is used for coalition wxy. In case 2, Figure 7 will be

used. They differ only with respect to state 3.
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Since we must eventually end up either with coalition w or wy, we start by solving for the

equilibrium prices in these events. We then proceed backward to compute the equilibrium

prices starting with the other (non stable) market coalitions. For instance, once the sta-

tionary price that prevails with coalition w has been identified in Figure 3, we can compute

the prices that prevail starting with coalition wz in Figure 6, etc. All equilibrium prices are

chosen according to the definition given in Section 4.1. The market price in states 1 and 2

is assumed to be δ−1 so that we only discuss the price in state 3.

Coalition w: The market price is δ−1.

Coalition wx: Suppose that we start in state 3 with coalition wx. Depending on whether

project x is rescued or not, there are two possibilities for the next period: one that

starts again with coalition wx and one that starts with coalition w. We know that the

future market price in the latter branch will be δ−1 and we want to compute the price

ρ that will clear the current market and that will prevail again in the (zero-probability)

event that the economy would follow the first branch with wx. Since project x must

be dropped for the market to clear (with our rationing device), that price must be high

enough to make refinancing project x an unattractive option.

At price Rx = −Vm(x)/x(3) = Vm/3, project x would be refinanced at the margin for
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a net gain of zero and the coalition would be stable. An investor is ready to pay Rx3

today in the hope of ending in state 1 or 2 tomorrow: being stationary, the value of

ending again in state 3 tomorrow would also be zero. Hence

Rx3 = Vm(x) =
2 + δVm(x)

3
+

X + δVm(x)

3
+

0

3
,

=
2 + X

3 − 2δ
;

so that,

Rx =
2 + X

3(3 − 2δ)
≥ 2 ≥ δ−1.

To conclude, we may arbitrarily state that ρ = Rx + ε, with ε > 0, to ensure that

project x is dropped. At that price, the owners of project w would like to lend all their

funds but they can only lend to themselves. In short, our rationing device is at work

and the market clears at price ρ.

Coalition wy: Suppose that we start in state 3 with coalition wy. Since there is no shortage

of funds, setting the price at δ−1 equilibrates the market. Like above, we verify that

y is solvent at that price by computing the limit price Ry that would make it barely

solvent:

Ry1 = Vm(y) =
−1 + δVm(y)

3
+

Y + δVm(y)

3
+

0

3
,

=
Y − 1

3 − 2δ
≥ 2 ≥ δ−1.

Since Ry ≥ δ−1 we conclude that y is refinanced at price δ−1 in state 3.

Coalition wz: Again the market price is δ−1 > 1 in all events. At such price, refinancing

z is never an attractive option since one finances today 2 in the hope of recouping at

most 2 with probability one third tomorrow.

Coalition wxy: It is impossible to refinance project x in state 3 so that the market price

will be set high enough to make that an unattractive option. The question is whether
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the required high price will push project y into bankruptcy. Consider case 1 in figure

4 where it does. Notice that the condition 3Y > X + 5 implies that Ry > Rx. Then in

the event where project x stays solvent at the margin, so will project y and the future

market price in state 3 will be the same. As above, the limit price that makes project

x solvent is Rx. Hence, we set the price again at ρ = Rx + ε with ε sufficiently small

so that Ry ≥ ρ > Rx. Notice that project w gathers a rent in that case from project y.

We add that a price R > Ry would not yield an equilibrium since the aggregate excess

demand would not be maximized under the non positivity constraint.10

Consider now case 2 where project y is also dropped (Figure 7), that is when Ry ≤ Rx.

Then, in the (zero-probability) event where project x stays solvent at the margin, the

surviving coalition will be wx and the market price will be ρ (see Figure 5) in the

future. Again, we may assume that the market price is ρ > Rx ≥ Ry so that both x

and y are dropped .

Coalition wxz: Assume that the price is δ−1 in every state and that z is dropped in state 1.

Then it is optimal to drop z in state 1. In state 3, the supply of funds strictly exceeds

demand at price δ−1 so that we have a (rationed) equilibrium at that price. We need

to show that x is refinanced at that price.

Let V ′
m(x) be the current continuation value of project x, that is the value of x if we

end up in states 2 or 3 tomorrow with the same coalition and the same price δ−1. In

state 1, the price is also δ−1 but z is dropped so that the coalition reduces to wx and

we have shown above that x is worth Vm(x) = 3Rx with this coalition. It follows that

V ′
m(x) =

2 + δVm(x)

3
+

X + δV ′
m(x)

3
+

−3 + δV ′
m(x)

3
,

=
X − 1 + 3δRx

3 − 2δ
,

≥
X + 2

3 − 2δ
≥ δ−13,

10That is, if a price R ≤ Ry is expected in state 3 in the future, then a price R > Ry is not a current

equilibrium price.
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and project x is refinanced in state 3.

Coalition wyz: The reasoning is similar to the one used above for coalition wxz: assume

that the price is δ−1 in every state; then z is dropped in state 1. There is no shortage

of funds at price δ−1 in any state. We need to show that y is refinanced at that price

in states 1 and 3. If z is dropped, we end up with the stable market coalition wy and

the future prices are δ−1 in every state. It follows that y is evaluated at price δ−1 in

every state. Since δ−1 ≤ Ry, y is refinanced.

Coalition wxyz: There is no shortage of funds at price δ−1 in any state. Similar arguments

as above establish that all projects are refinanced except z in state 1. First, one can

establish that x is worth Vm(x) with coalition wxy once z is dropped is state 1. We

then obtain that x is refinanced in state 3 since its continuation value is

X + 2

3 − 2δ
≥ δ−13.

Likewise, y is worth Vm(y) = Ry with coalition wxy so that its current continuation

value V ′
m(y) is

V ′
m(y) =

−1 + δVm(y)

3
+

Y + δV ′
m(y)

3
+

−1 + δV ′
m(y)

3
,

=
Y − 2 + δRy

3 − 2δ
,

≥
Y − 1

3 − 2δ
≥ δ−1,

which warrants its refinancing in both states 1 and 3.

This completes the description of the equilibrium.

One may argue that the owner of project x suffers from myopia by not refinancing project

y in state 1 since the demise of that project directly implies an even greater loss of value

for project x in the future. But to make that argument one must relax the assumption of

a competitive equilibrium where agents react to current and “rationally” expected future

prices. In short, the external effect of the demise of project z on the fate of project x is
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of a pecuniary nature and cannot be coherently “expected” in a “rational” expectations

equilibrium. Obviously, if the owner of project x could grasp this external effect, he would

simply horizontally integrate with project z.

The introduction in state 1 of a current market for future funds in state 3 (so that the

balance sheet of project z would turn positive in state 1) does not help. Such a market

is implicitly present in our set-up and that project z is not financially viable despite the

presence of that market. The problem is not that project z’s future funds are not negotiable

in state 1 but that they are undervalued in a competitive equilibrium.

Project z gathers no rent from being the “white knight” in state 3 whose presence is

necessary to save project x. Notice that the presence of project w is no less necessary in

that state for that purpose. Hence if project z would receive a rent, then project w would

receive it as well since the funds of both projects are perfect substitutes. The fact that one’s

presence prevents the instance of a crisis is not sufficient to ensure a rent in a competitive

equilibrium. In fact, there is something of a paradox here: the rent associated to funds in

state 3 accrues (in case 1) to project w only when project z as been dropped, thus creating the

crisis that rationalizes the increase in the interest rate. Hence project z is dropped because

only a rent-generating crisis could justify its current refinancing, and such rent-generating

crisis can only occur if project z is not refinanced.

6 Conclusion

We show, in this paper, that the efficiency of a liquidity allocation mechanism depends on

its ability to measure the value of a project, taking into account its contribution to the

liquidity of the economy in future periods. This contribution is not taken into account by

decentralized markets because it represents an externality which cannot be priced on com-

petitive liquidity markets. Our main result is given in Result 2 and states that a competitive

liquidity market may be more fragile than a centralized mechanism. This has implications
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on how a public authority could supervise financial markets to make sure that liquidities are

properly allocated among productive projects. The existence of a competitive financing rate

for liquidity exchanges is necessary to signal the opportunity cost of liquidities and drive the

price of capital in the economy. However, intervention by a market regulator to rescue a

distressed project that cannot find refinancing on the liquidity market may help ensure that

this liquidity market remains sound in the future.

The dynamic inefficiency due to the externality may be alleviated by contracts that

could lead firms to integrate. Horizontal integration of the two firms that are affected by the

externality could eliminate the externality and restore efficiency. Such integration, however,

could be non-desirable for other motives such as antitrust. Furthermore, some externalities

may not be internalized if firms cannot perfectly anticipate all future contingencies. For

example, the economy may be subject to some unanticipated shock which could put in

financial distress some firm that would have liked to merge in a previous period with another

firm had it anticipated this shock but did not because it could not foresee it. So, the dynamic

ineffiency identified in this article should be of real concern.

It is interesting to consider the following interpretation to our model. The coalitional

model can be related to a financial market with a financial intermediary.11 The intermediary

allocates financing among its firms to maximize the value of its portfolio of firms. A long-

lived financial intermediary can therefore endogenize the type of externalities that prevent the

market from being efficient, that is, it can take into account the potential future contribution

of a financially distressed firm when deciding to refinance it or not.

The only source of financial imperfection we consider is a potential shortage of liquidity

at the aggregate level. If markets cannot decentralize the optimal allocation, firms may have

to use complicated long-term contracts which would depend on all realized shocks in the

economy. It would then be interesting to characterize the nature of these contracts when

11See Dolar and Meh (2002) for a non-technical survey of the literature on intermediary-based and market-

based views of financial structure.

36



they suffer from this and other market imperfections such as non-commitment.
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Appendix

Proof of Lemma 1

The first part comes directly from admissibility (AD). The second part, directly from the

budget balance condition (BB).

Proof of Lemma 2

If y−
s = ∅, the result is obvious. If y−

s 6= ∅, then the question becomes: given that we manage

to keep all projects solvent, would we want to drop a project now that aggregate liquidity has

risen? The answer is “No”. Suppose that in state s ∈ S∗ the coalition z survives, and that

projects w ⊂ z are bankrupt in state s′ ∈ S∗. This implies that

Σ z(s) + δV (z) ≥ Σ z \ w(s) + δV (z \ w). (11)

In state s′, y increases for all projects. Given stationarity, this affects only the first term on

each side of condition (11). Since there are more projects in z than in z \ w, this condition
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must also be satisfied in state s′. Hence, it is not optimal to bankrupt more projects in s′

than in s.

Proof of Result 1

Since budget balance holds, the market rate of return has to be equal to δ−1. The stability

of y implies that all y in y are such that y(s) + δVm(y) ≥ 0 for any possible s. Suppose y is

not stable with a centralized institution, then, there is a state s in which sub-coalition y \ z

must optimally be bankrupt. This also writes

Σy(s) + δV (y) < Σ z(s) + δV (z),

where z is the value maximizing coalition in state s. This implies

Σ(y \ z)(s) + δ(V (y) − V (z)) < 0.

By stability on the decentralized market, we must have that

Σ(y \ z)(s) + δ Σy∈y\z Vm(y) ≥ 0.

This means that the contribution V (y)−V (z) of y\z to the centralized value of y is smaller

than its market value, that is, a contradiction.
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