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Leader and Follower: A Differential Game Model*

Hassan Benchekroun†, Ngo Van Long‡

Résumé / Abstract

On analyse un jeu différentiel entre deux joueurs, dont le premier a
l'avantage de prendre sa décision avant son adversaire. On compare le profil de
stratégies d'équilibre de ce modèle avec celui d'un modèle d'actions symétriques.
On démontre que l'existence d'un leader favorise la conservation dans
l'exploitation du stock commun. On analyse les déviations possibles à partir d'un
équilibre. On démontre que si le leader peux s'engager à une politique
d'exploitation plus modérée, alors le suiveur peux répondre plus ou moins
agressivement, selon la durée de la période d'engagement.

We consider a differential game between two players, where one player
has the first mover advantage. We compare the equilibrium strategy profile of this
model with the one generated by a conventional symmetric model. It is shown that
the existence of a first mover results in more conservationist exploitation in the
aggregate. We also consider the implication of departures from the equilibrium.
We show that if the leader (the first mover) can commit to decrease its  effort over
a finite interval of time, then the follower (the second mover) may respond by
increasing, or decreasing, its effort, depending on the length of the commitment
period.
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1 Introduction

Migratory �sh that travel along the coast line of several nations are subject
to sequential catching. This has been the cause of many disputes between
nations. For example, the Paci�c salmon disputes between Canada and the
United States of America are due largely to what is perceived by Canada
as Alaska's unfair \interceptions". The Canadian salmon, born in Canadian
rivers, have the habit of travelling to the Paci�c ocean, staying in the high
seas for a few years (3 to 7 years, depending on the species) and then returning
to Canada for breeding. On their return trip, they travel along the coast line
of Alaska before reaching British Columbia. Alaska's �shers have the chance
to catch these �sh �rst. This is called \interception"1. If they catch all the
Canadian salmon that pass by, then there will be no more �sh in the future.
So they do have an incentive to conserve the resource. Canadian �shers are
the second mover, because they observe the Alaskan interceptions before they
decide how much to catch2.

Several interesting theoretical questions arise: (i) what would be a rea-
sonable de�nition of equilibrium strategies for this type of game? (ii) in what
sense this is a leader-follower game? (iii) does the leader have an incentive to
\set an example" by restraining its catch rate relative to a situation where
the two players are symmetrical? (iv) if an equilibrium is perturbed by one
player, how would the other player react? For example, if one player decides
and commits to decrease its �shing e�ort below its equilibrium value for a
speci�ed time interval, would the other player react by also decreasing its
�shing e�ort? These questions have not been raised in the existing theoret-
ical literature on common property resource management (Plourde (1970),
Sinn (1984), Clemhout and Wan (1985), Bolle (1986), Thomas (1992), Mis-
sios and Plourde (1996,1997)), nor in the literature on �sh war, which deals
only with symmetric situations (Levhari and Mirman (1980), Chiarella et al.
(1984), Kaitala and Pohjola (1988), Plourde and Yeung (1989), Fischer and
Mirman (1992), Datta and Mirman (1994), Missios and Plourde (1996)) or

1According to Huppert (1995) the interceptions by Alaska accounted for 20 per cent
landed value of all salmon species caught by Alaskan �shers over the period 1990-91.

2The Paci�c salmon dispute also involves another player, namely the �shers fromWash-
ington/Oregon. We neglect this aspect for simplicity. For technical and institutional as-
pects of the disputes, see Munro and Stokes (1987), Munro, McDorman and McKelvey
(1997), and Huppert (1995). For theoretical analyses of the Paci�c salmon disputes, which
abstract from the sequential nature of the problem, see Tian (1998), and Miller (1996).
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with situations where one of the parties is myopic (Crabb�e and Long (1993).)
This paper is an attempt to model this type of sequential �shing game.

We formalize this �shing game as a di�erential game3, involving one state
variable, the �sh stock, and two control variables, the harvest rates, or e�ort
levels, of the players. Using the di�erential game framework, we shall in-
vestigate the answer to the above questions. We consider a continuous time
model where at each time t, player one (say Alaska) harvests from the stock
before player two (say Canada) can harvest. Player two is the second mover:
it has the opportunity to observe the rate of harvest of player one, before
deciding on its own rate of harvest. Furthermore, we assume that at any t,
the harvest rate of player one (the �rst mover) has a negative impact on the
productivity of player two's �shing e�orts. We characterize the Stackelberg
equilibrium strategy pro�le, and compare it with the Naive Nash equilibri-
um. We show that the �rst mover (i.e., the Stackelberg leader) in fact has
an incentive to be more restrained in its harvest. The combined harvest of
the two players in this leader-follower equilibrium is smaller than the total
harvest in a Naive Nash equilibrium.

We also consider a deviation from the equilibrium strategies. We suppose
player one decreases its �shing e�ort during a �xed period of time.(This
may be due to pressure for more conservation from environmental groups in
country one.) We show that player two would respond by modifying its e�ort.
The modi�cation of player two's �shing e�ort is shown to be an increasing
function of time. Furthermore, we show that the best response by player two
to player one's decreased �shing e�ort is ambiguous and is sensitive to the
length of the period of time during which player one is decreasing its �shing
e�ort. This period of time can be interpreted as the commitment period to a
lower �shing e�ort of player one. When the period of commitment is short,
player two increases its catching e�ort. However, when the leader's period of
commitment is long enough, player two responds by decreasing its catching
e�ort for a certain period of time. This decrease could be even greater than
player one's deviation. Our analysis therefore suggests that if environmental
groups in country one (the leader) want to achieve an overall moderation
in the exploitation rate, but manage only to get their own government to
commit to a short term decrease in �shing, they may end up causing more
�sh to be caught by the other country. Thus a good intention might well

3See Clemhout and Wan (1994) for a concise treatment of di�erential games. For a
comprehensive treatment of di�erential games, see Dockner et al. (2000).
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result in a bad outcome. Only a suÆciently long period of commitment by
the leader would serve the conservationists's objectives.

In section 2, we set up the model, characterize the Stackelberg equilibri-
um, and compare it with the Naive Nash equilibrium. Section 3 deals with
deviation from the equilibrium strategies. Some concluding remarks are of-
fered in section 4.

2 The Model

We use a continuous time model4. Let x(t) be the stock of �sh at time t.
Player one's (Alaska's) catch rate at t is h1(t) = �1(t)x(t), where �1(t) may be
interpreted as its �shing e�ort. Player one's net bene�ts is R1(h1(t)), which
is independent of player two's �shing e�ort �2(t), because player one catches
�rst, before player two. The net bene�ts to player two, on the contrary,
depend on both h1 (t) and h2 (t) as well as the stock of �sh and are given by
R2(h2(t); h1 (t) ; x (t)), where h2(t) = �2(t)x(t). We assume R2 is decreasing
in h1 and increasing in x. This may be justi�ed as follows. The greater the
catch rate of player one, the more diÆcult it is for player two, who must
�sh after player one has �shed, to achieve a given catch rate. This negative
impact of player one's catch rate on player two's bene�ts is stronger the lower
the �sh stock.

We assume that R2(h2(t); h1 (t) ; x(t)) takes the multiplicatively separable
form

R2(h2(t); h1; x(t)) = R(h2(t))

 
1�

h1 (t)

x (t)

!
.

4In an earlier version of the paper, a di�erence-equation game, in discrete time, was
used: we adopted a modi�cation of the Levhari-Mirman ( L-M,1980) model of �sh wars
to allow for the sequentiality of the game under consideration. Using the L-M function-
al forms, with modi�cation to capture sequential moves, we obtained a puzzling result:
Canada's harvest strategy turned out to be independent of Alaska's harvesting rate, i.e.,
Canada would have a dominant harvesting strategy. This puzzling result seems to be
attributable to the L-M speci�c functional forms for the utility function (log utility) and
the reproduction function (a power function, concave in the stock). Unfortunately, to
our knowledge, these are the only functional forms for which we can compute analytically
equilibrium strategies in a discrete-time sequential game. We have therefore decided to
try to capture some aspects of sequentiality using a continuous time model: one group of
�shers are disadvantaged by the \prior" harvesting by the other group: the externality
goes only one way.
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In particular, if we impose the restriction that R(:) = R1(:), then the above
equation indicates that if player one and player two catch the same quantity
of �sh, the net bene�ts to player two will be lower, because of the externalities
generated by player one's catch. The fact that player two is directly a�ected
by player one's catch is captured by the multiplicative term

�
1� h1(t)

x(t)

�
. The

larger the extraction rate of player one and the smaller the available stock of
�sh the more costly it is for player two to harvest and the lower will be its
net bene�t for a given harvesting level.

The rate of growth of the �sh stock is

_x(t) = G(x(t); �1(t); �2(t)): (1)

The objective of player one is to maximize J1, the discounted sum of its
instantaneous net bene�ts

J1 =
Z 1

0
R1(h1(t))e

�rtdt

subject to (1), where r denotes the interest rate which we assume, for sim-
plicity, to be the same for both players.
Similarly, the objective of player two is to maximize J2:

J2 =
Z 1

0
R2(h2(t); h1; x(t))e

�rtdt

subject to (1).
We seek a Markov perfect Nash equilibrium where each player uses a time-

independent Markovian strategy: �1 = �1(x) and �2 = �2(�1(x); x). That
is, player one conditions its current e�ort level only on the current stock,
and player two conditions its e�ort level both on the current stock, and on
the observed e�ort level of its rival, whose catch rate is observed by player
two. This feature of the player two's catch strategies allows us to capture the
fact that the �shing game is sequential: player one catches �rst and player
two is informed of the catch of player one before taking its action. Since the
action of player two depends on the action of player one, which it observes
before taking its own action, and since player one knows this, and takes this
into account, the solution we are seeking is in fact what economists normally
call a Stackelberg equilibrium. But, as pointed out by game theorists, and
as will be discussed more fully below, a Stackelberg equilibrium is a Nash
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equilibrium, where the strategy space of the follower is the set of all feasible
reaction functions5.

The Hamilton-Jacobi-Bellman (HJB) equation for player one is

rV1(x) = max
�1

[R1(�1x) + V 0
1(x)G(x; �1; �2(�1(x); x))]

and the HJB equation for player two is

rV2(x) = max
�2

[R2(�2x)(1�
�1(x)x

x
) + V 0

2(x)G(x; �1(x); �2)]:

To proceed further, it is convenient to specify explicit functional forms.
Assume the transition equation is linear in x :

G(x(t); �1(t); �2(t)) = Ax(t)� �1(t)x(t)� �2(t)x(t)

The assumed linearity allows us to derive analytical solutions. A possible
justi�cation is that even if the true function is, say, quadratic6 in x, when
the two players are facing a low stock level, a linear approximation may be
a reasonable price to pay for tractability7. Linearity implies, in the absence
of human harvesting, an exponential rate of growth of the �sh stock: the
resource growth is neither limited by space nor by food supply (see Dasgup-
ta and Heal (1979), Clark (1990)). This assumption is not unreasonable,
because for most kinds of �sh that are commercially exploited, it is human
harvesting, rather than natural conditions, that is the relevant limit to the
growth of the biomass. Their survival is endangered by mass exploitation
rather than by natural forces.

The net bene�t function of player 1 is assumed to take the simple form

R1(�1x) = (�1x)
�; 0 < � < 1;

It is a concave function in the catch rate, �1x. For example, if the harvest
is sold in an international market at a constant price, then net bene�t for

5See Dockner et al. (2000), for further discussion in the context of di�erential games.
For a similar point, made in the context of homogenous product duopoly, see Binmore
(1992).

6A quadratic function is a frequently made assumption in the renewable-resource liter-
ature.

7It is moreover a realistic assumption in the case of stocks where food and space con-
straints on growth are negligible.
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player one is its total revenue minus its total cost. If total revenue is linear
and total cost is convex, then net bene�t is concave. In the case the harvest
is sold in the home country's market segregated from the world market,
the net bene�t to the home country is taken to be the sum of consumers'
surplus and producers' surplus; in this case, since the consumers' surplus is
normally concave and the cost function of catching �sh is usually convex, it
makes sense to assume that the net bene�t is concave8. This justi�es the
assumption � < 1.

For player two, we specify

R2(�2x; �1x; x) = (�2x)
�(1� �1); 0 < � < 1:

Notice that if 1��1 � 0, then player two would set its e�ort level at �2 = 0.
The equilibrium would thus be trivial in that case. Henceforth, we will
mainly focus on the cases where parameter values ensure that both players
will choose positive e�ort levels.

Our �rst task is to show that there exists a pair of Markov perfect Nash
equilibrium strategies, as described by the following proposition:

Proposition 1

Assume that r > �A. There exists a pair of Markov perfect Nash equi-
librium strategies, where player one's equilibrium strategy is

�1 =
r � �A

1� �
= ��1 > 0 (2)

and player two's equilibrium strategy is

�2 =
r � �A + ��1

1� �
= �2(�1) (3)

if 1 � �1 > 0, and �2 = 0 if 1 � �1 � 0. Given this pair of equilibrium
strategies, if 1� ��1 > 0, the equilibrium e�ort level of player two is

��2 =
(r � �A)

(1� �)2
=

��1

(1� �)
> ��1 (4)

Proof: See Appendix A.
Remarks:

8The di�erence between a positive concave function and a positive convex function is
a concave function.
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(i) The above pair of strategy is a Nash equilibrium in the following sense.
Player two takes the number �1(to be observed) as independent of its action,
and �nds, from the set of functions �2(�1;x), a function that maximizes
its payo�. This optimal choice is found to be the function described by
(3). Player one, taken as given player two's strategy (3), chooses a function
�1 (x) that maximizes its payo�. This function is found to have a constant
value which is given by (2). This Nash equilibrium is sometimes called a
Stackelberg equilibrium, in the sense that player one harvests �rst (even
though one can say that the strategies are chosen simultaneously).

(ii) Notice that, from (4), player two's harvesting e�ort is greater than
that of player one if 1� ��1 > 0.

(iii) Player two's strategy, which may be called its reaction function, dis-
plays the property of strategic complementarity: an increase in �1 implies
that �2 will increase too

9. Moreover, if � > 1=2, the increase in �2 is greater
than the increase in �1.

(iv) Had player one not known that �2 is a function, and had it taken �2

as a given number10, like in Cournot games, we would have ended up with a
pair of values, denoted by (b�1; b�2); where

b�i =
r � �A

1� 2�
; i = 1; 2 (5)

we assume r � �A > 0 and � < 1=2. Call this \equilibrium" the Naive E-
quilibrium. Comparing (5) with (2), we see that the leader's catch rate ��1is
smaller that the catch rate b�i of each player at the Naive Equilibrium. This
makes sense: the leader knows that if it catches more, the follower will also
increase its e�ort. Therefore, the leader has an incentive to exercise restrain-
t. Moreover, the overall catching e�ort under the Stackelberg equilibrium
(��2 + ��1) is less than the catch e�ort under the Naive equilibrium (b�1 + b�2).

9This strategic complimentarity holds also for more general net bene�t functions, pro-
vided that the elasticity � of the marginal net bene�t with the respect to the catch, i.e.,

� �
R

00

2
�2x

R
0

2

, is such that the following condition is satis�ed: ��(r�A+�1)�
0

�2
> 1. This con-

dition can be derived from the �rst order condition of the HJB equation associated with
player 2's problem together with the use of the envelope theorem applied to that equation.
In general, this condition has no direct relationship with the concavity (or otherwise) of
the net bene�ts function. In the special case where � is a constant, the above inequality
is equivalent to requiring 0 < � < 1. (A proof is available upon request.)

10Not the number ��2 above, of course.
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This means that, contrary to what might be expected, the fact that one play-
er is given the �rst mover advantage is not worsening the preservation of the
resource.

(vi) We have found a Nash equilibrium (with a leader and a follower) on
the assumption that the follower assumes that the leader chooses a constant
e�ort level �1. The follower then solves for its best reply, which we call the
reaction function. Using this reaction function, the leader solves its optimal
control problem. It turns out that the solution yields a constant e�ort level,
thus justifying the follower's initial assumption.

(vii) The equilibrium found in Proposition 1 has the property that each
player's strategy is individually optimal and is unique, given the player's
strategy. This can be proven by writing down each player's problem, given
the speci�ed strategy of the other player, as an optimal control problem,
and applying the standard suÆciency theorem. Note, however, the fact that
we have found an equilibrium strategy pair does not preclude the possibility
that there may exist non-linear strategy pairs that also constitute a Nash
equilibrium.

(viii) Note that the equilibrium determined in Proposition 1 is not col-
lectively optimal, that is, the sum of net bene�ts of the two players is not
maximized. In addition to a �rst source of ineÆciency due to the absence of
property rights over the resource, there is a second source of ineÆciency due
to the fact that player one ignores its direct negative impact on player two's
net bene�ts.

In what follows, we shall focus on parameter values yielding positive �sh-
ing e�orts for both players : 0 < r��A

1��
< 1.

3 Departures from the equilibrium

Given player two's reaction function, player one's choice of �1 maximizes its
objective function. This may be interpreted as follows: Suppose player two
has the following best reply function (which is a version of (3)):

�2(t) =
r � �A+ ��1(t)

1� �
= �2(�1(t)) (6)

which can be a function of t to the extent that �1(t) can in principle be a
function of time. Player one then has an optimal control problem to solve,
where �1(t) is the control variable. We have shown that this control problem
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has the solution �1(t) = constant, given by (2). It follows that no deviation
from this path, even for a short time interval, could be optimal for the leader,
if player two would continue to use the rule (6) at all time. But such
continuation is not necessarily optimal for player two. In fact, player two
would exercise constant e�ort only if player one does so. Therefore, it does
make sense to ask the following question: if player one deviates from the
equilibrium strategy ��1 for an interval of time, how will player two react?
One possible reason for such deviation is that the government of country
one may be responding to pressures from conservationist groups within the
country, by promising a reduction in the catch rate over a speci�ed number
of years. (In a di�erent scenario, the government of country one may promise
to subsidize its �shing industry over a �xed period, implying an increase in
the catch rate.)

We suppose, in the following analysis, that player one decides to increase
its e�ort level to ��1 + " over a speci�ed time interval [0; � ]. (The case of a
decrease can be inferred from the analysis by a simple change of sign.) We
should note that the initial equilibrium strategies constitute a Markovian
equilibrium and therefore remain equilibrium strategies once the aggressive
move of player one ends. Our task will then be to determine the reaction of
player two over the interval of time [0; � ]. Let g (t) denote the modi�cation
of player two's �shing e�ort over [0; � ]11.Before proceeding further we should
�rst note that if player one can commit permanently (� =1) to this increase
in its catch e�ort, then player two's best reply is easily derived from (3) and
is

g (t) = d�2 =
�

1� �
d�1 > 0

For a �nite � , player two's problem is to choose a function g that maxi-
mizes the discounted sum of instantaneous pro�ts:

Max
fg(t)g

Z �

0
((��2 + g (t))x)�(1� (��1 + "))dt+ e�r�V2 (x (� )) (7)

subject to
�
x= Ax� (��1 + "+ ��2 + g (t))x (8)

11Note that we could just as well modelize the modi�cation of player two's �shing e�ort
as a function of the �sh stock (i.e. a Markovian strategy). However since player two is the
\only decision maker" during [0; � ] (player one is assumed to follow ��1 + � over [0; � ]) the
two formulations are equivalent and lead to the same �shing e�ort path.
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where V2 (x) denotes the discounted sum of pro�ts when each player follows
the initial equilibrium strategies and where ��2 is given by

��2 =
r � �A+ ���1

1� �
(9)

Player two's problem is a standard optimal control problem and is thus solved
by standard maximum principle techniques (see Leonard and Long (1992)).

Let H denote the Hamiltonian associated to (7) :

H = ((��2 + g (t))x)�(1� ��1 � ")) + � (Ax� (��1 + "+ ��2 + g (t))x)

where � is the shadow price of the stock of �sh. The solution to the problem
above is characterized by the following necessary conditions:

x� ((��2 + g (t)) x)��1 (1� ��1 � ")� �x = 0 (10)

�
�= r��� (��2 + g) ((��2 + g)x)��1 (1���1�")�� (A� ��1 � "� ��2 � g) (11)

and the transversality condition

� (� ) = V 0
2 (x (� )) (12)

By di�erentiation of (10) with respect to time and substituting
�

�
�
into (11)

we obtain:
�
g �(��2 + "

�

� � 1
)g = ��2

"�

� � 1
+ g2 (13)

where we have made use of (9). Furthermore, substituting � from (10) into
(12) and using V2(x) = K2x

�, we obtain

(1� (��1 + ")) (��2 + g (� ))��1 = K2 (14)

Player two's optimal response, g (t) ; to player one's �shing e�ort increase is
thus determined by the di�erential equation (13) and (14). This di�erential
equation (13) can be transformed into a Bernouilli equation after a change
of variable. For details see Appendix B.

Proposition 2: The optimal modi�cation of player two's �shing e�ort,
g (t), to player one's increased �shing e�ort is given by

g (t) =
1��

1�(��1+")
1���1

� 1

��1 1
��2
�

1

��2�"
�

��1

�
e(��2�"

�

��1
)(t��) + 1

��2�"
�

��1

� ��2 (15)
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Thus the modi�cation of player two's �shing e�ort is a decreasing function
of time (g0 (t) < 0), and for " = 0 we have g � 0.

Proposition 3: Player two's reaction to an increase in player one's �sh-
ing e�ort is ambiguous and is sensitive to the period of time during which
player one can commit to such an increase. If the period of commitment is
small, player two reduces its catching e�ort. If the period of commitment is
large enough, player two's catching e�ort is initially increased for a certain
period of time though it is ultimately reduced. In the limiting case where
player one commits permanently to an increase of its harvesting e�ort, play-
er two unambiguously reacts by increasing its own harvesting e�ort. This
increase could be even greater than player one's deviation.

Proof: see Appendix C.
The intuition behind Proposition 3 is as follows. Player two is facing

a trade o�: more harvesting increases the instantaneous net bene�t at the
expense of the stock of �sh available when the aggressive move of player one
ends, at the instant � . The main incentive for player two to reduce its catch
before � is to enjoy a larger stock once competition becomes less aggressive
(after �). The larger is � the less important is the present value of the game
after � for player two and the smaller are the incentives to conserve the
resource. For a suÆciently long period of commitment of player one (to
more aggressive catching e�orts), player two responds by also increasing its
catching e�ort for a certain interval of time.

According to the above propositions, if the commitment period is short,
the result is similar to the outcome of a static Stackelberg model with two
�rms, a leader and a follower, both selling in the same market. In the case
of strategic substitutes in that static model the best reply of the follower
to any increase of output of the leader is to decrease of its own output.
However, despite this similarity, our model is di�erent. The two players do
not compete in the same market12: they either consume their catches, or sell
them in distinct markets. Furthermore, we have shown in proposition 1 that
the two e�ort levels are strategic complements. It would be interesting to see
how the introduction of rivalry in a common market would alter the behavior
of the two players. Since there is no competition in the market place in the
case of separate markets, as opposed to the oligopolistic case, it could be
expected that the reaction of the follower to an aggressive move of its rival

12The conclusions would hold if �rms operate in the same foreign market where they
have measure zero.
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be milder under the case of separate markets. Furthermore one might expect
that the longer the period of commitment to the aggressive move, the \shier"
should be the response of player two. As can be seen from Propositions 2 and
3, such expectation turns out to be incorrect. The reaction of the follower,
in the case of a long period of commitment of the leader to an aggressive
move, turns out to be another aggressive move that could be even stronger
than the one that provokes it.

As a straightforward implication of propositions 2 and 3, we can conclude
that if country one (the leader) is committed to a more conservationist ex-
ploitation ( i.e., " < 0) over a speci�ed number of years, the follower will
follow suit only if the commitment period is long enough. Conservationist
groups that manage to get only very short term commitment by country one
would �nd their e�orts counter-productive.

4 Concluding Remarks

We have developed a simple model that captures to some extent the sequen-
tial aspect of transboundary �shery. We have been able to show that in
a Markov perfect equilibrium, the �rst mover has an incentive to be more
conservationist than a normal player in a symmetric situation. This picture
must however be seen with guarded optimism, for there is a dark cloud in the
horizon for the conservation-minded observer: the leader may deviate from
the equilibrium by making an aggressive move, and such a deviation may
trigger the follower to react by an even more aggressive move, if player one's
period of commitment to the deviation is suÆciently long. Another message
from our analysis is that pressures for a unilateral cutback in exploitation
would be fruitful only if the commitment horizon is suÆciently long.
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Appendix A

Proof of Proposition 1:

Player two takes player one's constant strategy �1 = ��1 as given, and
chooses its �2. The HJB equation for player two is

rV2(x) = max
�2

[(�2x)
�(1� ��1) + V 0

2(x)(A� ��1 � �2)x] (16)

Let us try the following functional form for V2(:)

V2(x) = K2x
� (17)

where
K2 = 0 if 1� ��1 � 0 (18)

For 1� ��1 > 0, equation (16) becomes

rK2x
� = max

�2
[(�2x)

�(1� ��1) + �K2(A� ��1 � �2)x
�] (19)

The maximization of the right-hand side of (16) yields

�2 =
�
1� ��1

K2

�1=(1��)
(20)

Hence

K2 =
1� ��1

�1��
2

(21)

Substituting (21) into (19), we get

�2 =
r � �A+ ���1

1� �
= �2(��1) if 1� ��1 > 0 (22)

Then, from (18),
�2(��1) = 0 if 1� ��1 � 0 (23)

We turn now to player one's problem. We assume that player one knows
that player two uses the strategy (22)-(23). Player one's HJB equation is

rV1(x) = max
�1

[(�1x)
� + V 0

1(x)(A� �2(�1)� �1)x] (24)
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Let us try the functional form V1(x) = K1x
�. Notice that �2(a1) has a kink.

We must solve (24) for two separate cases: case (i), where 1 � ��1 � 0, and
case (ii), where 1� ��1 > 0.

For case (i), we note that �2 = 0, and hence we have the HJB equation

rK1x
� = max

�1
[(�1x)

� + �K1(A� �1)x
�] (25)

subject to
1� ��1 � 0: (26)

Solving, we get

K1 =

"
r � �A

1� �

#��1
= K��

1

and hence

�1 =

"
r � �A

1� �

#
= ���1

which, in view of the constraint (26), is a solution provided that"
r � �A

1� �

#
> 1 (27)

If (27) is not satis�ed, then (25), subject to (26), has no solution.
For case (ii), we must solve

rK1x
� = max

�1
[(�1x)

� + �K1(A�
r � �A+ ��1

1� �
� �1)x

�] (28)

From this we get
���1
1 = !K1 (29)

where

! =
1

1� �

Thus, substituting (29) into (28), we get

r! = �1 + �!

"
A� r

1� �
� !�1

#
(30)

�1 =
(r � �A)

(1� �)
= ���1 (31)
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This yields

K1 = (1� �)

"
r � �A

1� � + �2

#��1
= K��

1

This completes the proof of proposition 1.

Appendix B

In this appendix we determine player two's optimal reply of Canada to
player one's catch increase by solving the di�erential equation

�
g �(��2 + "

�

� � 1
)g = ��2

"�

� � 1
+ g2 (32)

with the transversality condition

(1� (��1 + ")) (��2 + g (� ))��1 = K2 (33)

Let us de�ne
G (t) = g (t) + ��2

The di�erential equation (13) can be rewritten in terms of G (t)

�

G= G(G� ��2 + "
�

� � 1
) (34)

This di�erential equation is a Bernoulli equation. Let Y = 1
G
, (34) gives

�

Y=

 
��2 � "

�

� � 1

!
Y � 1

the solution of which is

Y (t) = Ce(��2�"
�

��1
)t +

1�
��2 � " �

��1

�
where C is constant of integration that can be determined by the transver-
sality condition (14).

After substitution we have

g (t) =
1��

K2

(1�(��1+"))

�� 1

��1

� 1

��2�"
�

��1

�
e(��2�"

�

��1
)(t��) + 1

��2�"
�

��1

� ��2
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and thus

g (t) =
1��

1�(��1+")
1���1

� 1

��1 1
��2
�

1

��2�"
�

��1

�
e(��2�"

�
��1

)(t��) + 1

��2�"
�

��1

� ��2.

Note that  
1� ��1

(1� (��1 + "))

!� 1

��1 1

��2

>
1

��2

Since, for " > 0 and for � < 1,

0 <
1

��2 � " �
��1

<
1

��2

we have that g (:) is a continuous and a decreasing function of time. Moreover,
if " = 0, g(:) is identically zero.

Appendix C

We now show that if player one increases its e�ort level by " over the time
interval [0; � ] then player two will increase its own e�ort, i.e. g (t) > 0 for
an interval of time. However player two will ultimately reduce its catching
e�ort, i.e. g (� ) < 0.

We start by noting that g (�) < 0. Indeed, from (15), it is straightforward
that

g (�) = ��2

0@ 1� ��1

(1� (��1 + "))

! 1

��1

� 1

1A (35)

For " > 0 and for � < 1, we have g (�) < 0.
We can also calculate g (0) :

g (0) =
1��

1�(��1+")
1���1

� 1

��1 1
��2
� 1

��2�"
�

��1

�
e�(��2�"

�
��1

)� + 1

��2�"
�

��1

� ��2 (36)

Now consider the implication of the length of the commitment period � .
Note that g (0) is a continuous and increasing function of � , and

lim
�!+1

g (0) = �"
�

� � 1
> 0

16



Thus there a exists a positive � such that g (0) > 0 i� � �� , and for each

given � �� there exists t� � such that for all t 2 [0; t], g (t) > 0: In the
limiting case where � =1 we have

g (t) = �"
�

� � 1
> 0 for all t 2 [0;1)

We now turn to the case of short commitment period. It is clear that

lim
�!0

g (0) = ��2

0@ 1� ��1

(1� (��1 + "))

! 1

��1

� 1

1A < 0

and thus there a exists a positive value � 0 such that for each given � � � 0

we have g (0) < 0. Since g (� ) < 0 and g is a continuous function of time we
have g (t) < 0 for all t 2 [0; � ]:
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