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1 Introduction

A good deal of attention has been paid by economists to the problems that
arise when individuals have access to a resource stock, whether it be re-
newable like �sh, or non-renewable like mineral deposits. In either case,
individual exploiters may not have an incentive to incorporate into their cal-
culations the costs imposed on others by their current exploitation. The
presence of negative externalities establishes a presumption that current ex-
ploitation will, in the presence of free entry, tend to be too high, and the
stock of the common resources depleted too quickly.

By contrast, there is another set of problems with a similar intertem-
poral common property avour, believed by many scientists to have poten-
tially serious implications for the welfare of future generations, but to which
economists appear to have paid very little attention. We refer here for the
tendency for the productivity of certain inputs to decline over time as the
result of past use. Two particular examples come to mind. First, the medical
profession and medical researchers have expressed alarm over the declining
e�ectiveness over time of many antibiotics, such as sulfonamides and peni-
cillin, as a result of their earlier use as therapeutic and prophylactic drugs.
Second, similar fears have been expressed concerning declines in e�ective-
ness of many pesticides, such as DDT. In both cases, current usage sets in
train a process whereby over time the target population, be it of bacteria,
rats, malarial mosquitos, sandies and whatever, acquires resistance to the
administered drug or poison, with the consequence that future doses are less
e�ective and, indeed, may ultimately prove to be totally ine�ective. This
phenomenon, though inconvenient, does not by itself suggest that the use of
such substances should be banned. However, insofar as individuals fail to
take account of the later costs imposed on others as a consequence of their
own current applications of an antibiotic or pesticide, there will be negative
externalities and the current application may, from the social point of view,
be ine�ciently high. More generally, it raises questions concerning the de-
sign of mechanisms that provide incentives for individuals to behave in ways
compatible with e�cient intertemporal resource allocation.

The economic problems arising from the declining e�ectiveness of pes-
ticides over time have been discussed by Feder and Regev (1975) and also
by Regev, Shalit and Gutierrez (1983). Their model incorporate interesting
features, such as predator-prey biological interaction and the dual dynamics
of population growth and the evolution of the pest's resistance. On the other
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hand, their analysis of the competitive solution is oversimpli�ed by their as-
sumption that �rms are static maximizers. In their models, �rms do not
take any account whatsoever of the e�ects of their actions on the dynam-
ics of the system. Our paper attempts to address this neglected problem.
We develop two models (one set in discrete time, one in continuous time) of
dynamic strategic interactions among n players (�rms, or individuals) that
maximize their intertemporal objective function by choosing levels of an in-
put whose use causes a steady decline in the e�ectiveness of the input. We
analyse the equilibria of these games. For each model, we compare the social
optimum with the outcomes of the non-cooperative game, where the con-
cepts of open-loop Nash equilibrium and Markov-perfect Nash equilibrium
are used alternatively. These concepts will be explained when the models are
introduced.

Formally, our models are similar, but not identical, to di�erential games
models of the �shery or other common property resources. (See Clemhout
and Wan (1994).) There are at least two di�erences. First, in our models,
the current pro�t of the �rm depends on a multiplicative interaction between
the state variable (the level e�ectiveness of a drug, say) and the control
variable (the number of doses). Thus the state variable acts as a quality
index. Second, a distinguishing feature of the discrete time model we use
in this paper, which makes it really di�erent from discrete time model of
resource exploitation, is that at any time t, given that the e�ectiveness of
the drug is positive, there is no upper bound on the quantity xjt that �rm
j can choose. (In the case of resource exploitation in discrete time, the sum
of the quantities extracted at time t cannot exceed the current stock of the
resource.) This feature makes the dynamics of our models more complicated,
and gives rise to a multiplicity of equilibrium strategy pro�les, with outcomes
that are Pareto rankable.

The paper is organized as follows. In section 2, we present a brief history
of antibiotics and pesticides, and highlight the importance of the problem of
resistance. In section 3, we develop a discrete time model involving n �rms,
and 3 periods. A continous time model is analysed in section 4. Section 5
contains concluding remarks.
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2 A Brief History of Antibiotics and Pesti-

cides

Mankind's experience with penicillin and dichlorodiphenyl trichloroethylene
(DDT) have interesting and signi�cant parallels. Both were developed and
became available in signi�cant quantities during the 1940's, and the develop-
ment of both substances was greeted with hyperbole and greatly exaggerated
claims of their likely bene�cial e�ects. During the early years of their use,
both were held up as powerful symbols of our ability to apply our growing
understanding of chemical and biological phenomena to defeat some of the
major scourges in human history. Each is the best-known example of a wide
range of substances whose usage over time have generated a similar range of
problems - problems that have dampened earlier enthousiasm and, indeed,
have provoked genuine alarm in some quarters.

2.1 The Pesticide Story

DDT was �rst synthesized as long ago as 1874 by a Viennese pharmacist,
Othmar Ziedler.However, its discovery was �rst registered in 1940 by a Swiss
chemist, Paul H. M�uller, who was at that time employed to �nd a chemical
method for controlling clothes moth. In 1945, it was used with great success
in a large-scale trial to control malaria along the Tennessee River. Such was
the promise of DDT that it gained for M�uller a Nobel prize in 1948. It became
a central weapon in the World Health Organization's \Global Eradication of
Malaria Plan" and of India's National Malaria Eradication Program, to which
the United States supplied over two hundred thousand tons of DDT a year.
According to Desowitz (1991), at its peak the American annual production of
DDT exceeded 400,000 tons. As a bonus, it proved to be equally e�ective, if
not more so, in controlling the insect vectors carrying other human diseases,
such as the sandies responsible for transmitting kala-azar, a signi�cant killer
in the Indian subcontinent.

The acquired resistance of insect pests to insecticides was noted long
before the commercial introduction of DDT in the 1940's. According to
Metcalfe (1955)- see also an article by the same author in Kogan (1986)- it
was observed in 1914 in the San Jose Scale selected by lime sulfur spray.
By 1946, resistance was observed in 11 species, including codling moth and
various types of tick and thrip. Since that time, the growth in the number
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of cases of resistance to insecticides is, indeed, impressive, as Table 1 shows.
There seems little doubt that, since at the time when the data in the table
were collected the susceptibility of many insect pests had not been studied,
this table provides an understatement of the true rate of proliferation of
pesticide resistance. In addition, the development of cross resistance - the
resistance of an insect to chemically related insecticides - and multiple resis-
tance - resistance of a species to a wide variety of insecticides with di�ering
modes of action - exacerbates the signi�cance of the problem.

It is important to note that the problems of induced resistance are not spe-
ci�c to the controversial, because obviously toxic, insecticides such as DDT,
lindane, carbaryl, and so on. Man's involvement in agriculture, whatever
speci�c form it takes, will generally provoke biological responses, whether
through mutagenic processes or simply through natural selection. For exam-
ple, Martin and Woodcock (1983, p. 14) note that the introduction of rust-
resistant varieties of wheat was, in time, followed by problems arising from
the selection of strains of rust that were able to grow on the new varieties.
One should also stress the importance of natural selection as a mechanism of
resistance development. Martin and Woodcock (1983, p.234) state, in their
discussion of the development of DDT-resistant strains of housey, that \the
process is one of selection, for DDT as ordinarily used has no mutagenic ac-
tivity." The phasing out of, or reduced reliance on, toxic and carcinogenic
insecticides, whatever other advantages it may bring, cannot be expected to
solve the sorts of problems caused by the development of insect resistance to
insecticides. Whatever physical, biological or chemical techniques are devised
in our e�orts to exploit and utilise the resources that nature has to o�er, and
to ensure that the fruits of such e�orts are enjoyed by mankind rather than
by competing species, we are likely to �nd ourselves in an arena in which our
competitors will �ght back. This is nothing more than the continuation of a
biological \arms race" - see Dawkins and Krebs (1979) - which is as old as
life itself, and indeed inseparable from it. The problem encountered in the
use of antibiotics and of pesticides are, perhaps, simply dramatic examples
of the phenomenon �rst suggested by van Valen (1973) and known to evo-
lutionary biologists as the \Red Queen" theory- the Red Queen, it will be
recalled, told Alice that \here...it takes all the running you can do, to keep
in the same place. If you want to get somewhere else, you must run twice as
fast as that."
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2.2 The Antibiotic Story

For a while, penicillin attained status similar to that of DDT as a potential
\magic bullet." The story of its discovery by Alexander Flemming in 1928 is
a famous anecdote in the annals of scienti�c discovery. During the following
decade, Howard Florey and Ernest Chain were responsible for investigating
further the properties of penicillin and for learning how to extract it, keep it
stable, and produce it in large quatities. Florey also played a major role in
persuading the United States government to support its large-scale produc-
tion - a task that was greatly helped by its spectacularly successful use on
victims of a nightclub �re in Boston in 1942. For a while, it seemed to some
that antibiotics and related forms of chemotherapy would achieve the erad-
ication of major killers such as tuberculosis, venereal diseases, septicemias,
pneumonias, cholera, and many other diseases. According to Levy (1992),
even in the usually hard-nosed medical literature of the time, it is possible to
�nd extravagant claims for penicillin e�cacy in treating cancers and viruses
- claims now regarded as having no foundation. Readily available over the
counter - prescriptions were not required until the mid-1950's - penicillin was
widely touted as a panacea and taken both as therapeutic and prophylactic
treatment. Among research laboratories, its remarkable successes encouraged
the saerch for further antibiotics capable of treating other bacteria.

The penicillins, al though the best known, are only one of many groups of
substances that have been developed and used as antibacterial agents. Many
other naturally occuring antibacterial substances have been found and devel-
oped since the early 1940's for therapeutic use. Among the early discoveries
were tetracyclines, which proved particularly e�ective against typhoid bacil-
lus, and streptomycin, which was the �rst antibiotic able to kill the bacterium
responsible for tuberculosis. In addition, many others are chemically synthe-
sized. Sulfonamide derivatives, for example, were �rst synthesized in the
1930's and proved highly e�ective in controlling streptococcal infections. It
is still the case that about 10% of all antimicrobial agents produced through
the world are sulfonamides of one form or another.

By the 1970's, the experience had dampened the uncritical euphoria of
the early 1940's, and a more balanced perspective on the capabilities and
limitations of antibiotics emerged. It became clear to many of those involved
that the success of any program with the ambitious task of substantially con-
trolling, let alone exterminating, a major disease or pest depended on many
things, involving not only biological and chemical science, but also political,
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social and, indeed, psychological factors. One problem that began to be en-
countered was the development of drug resistant strains of bacteria. This was
not entirely unexpected. Levy (1992, p.7) quotes Alexander Flemming, one
of the more prescient characters in this story, as warning the medical world
as early as 1945 that \the greatest possibility of evil in self-medication is the
use of too small doses so that instead of clearing up infection, the microbes
are educated to resist penicillin and a host of penicillin-fast organisms is bred
out which can be passed to other individuals and from them to others until
they reach someone who gets a septicemia or a pneumonia which penicillin
cannot save."

This passage is noteworthy for several reasons. First, it clearly recognises
the way in which certain patterns of usage of antibiotics may promote the
selection of resistant strains of bacteria. Second, it suggests a problem that
economists would recognise as involving an externality - it is not merely the
receiver of the antibiotic whose future defense against infection is jeopardised,
but also other people. A third aspect, which we note but will be forced to
ignore in our stylized formal modelling of the resulting externality problem,
is the complexity of the mechanism involved. Flemming identi�es too small
a dosage level as a problem. Current scienti�c understanding suggests that,
from a clinincal point of view, there is an optimum dosage, from which devi-
ations both below and above may generate costs in terms of reduced e�cacy
of therapeutic substance on future occasions.

However, until the mid-1970's the drug-resistance problem was regarded,
it seems, as little more than a minor irritant. Then two ominous develop-
ments shook medical experts. First, a strain of bacterium responsible for
meningitis, and previously known to be particularly susceptible to ampicillin
- a derivative of penicillin - was found that not only resisted, but actually de-
stroyed, that antibiotic. At around the same time, it was found that strains of
Neisseria gonorrheae, the bacterium responsible for gonorrheae, and hitherto
successfully treated with penicillin, has emerged that were drug-resistant.

Since then, it has become very clear that the drug-resistance problem
possesses a number of characteristics that make it an expensive and worrying
phenomenon. The principal characteristics are: (i) the speed with which
drug-resistant strains of bacteria have emerged in the wake of new antibiotics;
(ii) their ability not only to resist but also to destroy antibiotics; (iii) the
development of multiple drug-resistance; and (iv) the observation that most
antibiotics encounter this range of problems, often within a short time of their
initial introduction as therapeutic drugs. Moreover, it has become clear that
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the extend and speed of the development of drug resistance is inuenced in
important ways by patterns of usage. For this reason, the legal and economic
frameworks within which drugs are administered, and the prevailing state of
understanding and general attitudes to \appropriate" and \inappropriate"
uses of drugs are all relevant in inuencing the course of drug-resistance over
time.

3 A Discrete Time Model

In this section we develop a three-period model. The advantages of this
formulation is that, with a minimum of calculus, one can see the strategic
interactions among �rms in a dynamic context, without the need of acquiring
a knowledge of more advanced techniques such as optimal control theory or
dynamic programming. Also, the model is rich enough to generate multiple
equilibria that can be Pareto ranked. After outlining the basic framework,
we proceed to characterize the social optimum. This will be constrasted with
the outcomes of the non-cooperative game, �rst under the assumption that
�rms use only open-loop strategies, then under the alternative assumption
that they use Markov-perfect strategies1.

There are n identical �rms producing a homogenous good, whose price,
denoted by p > 0 is exogenously given in the world market. The output of
�rm i at time t is qit, where t = 1; 2; 3: The production function is

qit = [Atxit]
�
; 0 < � � 0:5

where xit � 0 denote the input purchased by the �rm i at the price w per
unit, and At is the level of e�ectiveness of each unit of input. Let N =
f1; 2; :::; ng:We assume that At declines over time, and its rate of decline at
time t depends on the aggregate rate of use Xt where

Xt =
X
i2N

xit (1)

Speci�cally, we assume that A1 is given, and, for t = 2; 3;

At = max f0; At�1 �Xt�1g (2)

1These concepts will be explained below in the context of our model. For more general

expositions, see Clemhout and Wan (1994), Fudenberg and Tirole (1991), and Dockner et

al. (2000).
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Firm i's pro�t at time t is

�it = p [Atxit]
� � wxit

Note that in this model, the externality is not concurrent: output of �rm
j in period 1 a�ects �rm i only in later periods, 2 and 3.

3.1 The social optimum

As a benchmark, let us assume in this section that there is a social planner
who wants to maximize the discounted sum of the the pro�ts of the n �rms.
Thus the planner chooses xi(t), i 2 N , t = 1; 2; 3, to maximize

W =
3X

t=1

X
i2N

�t�it

subject to (2) and (1), where � � 1 is the positive discount factor:
In what follows, for simplicity, we set � = p = w = 1. Since the produc-

tion function is strictly concave in the input xit, it is clear that the planner
will choose xit = xjt for all j; i 2 N . We will therefore use the symbols xt
and �t to denote the input level and the pro�t of the representative �rm at
time t. The planner's problem is thus to choose xt; t = 1; 2; 3; to maximize

W =
3X

t=1

h
n [Atxt]

� � nxt
i

subject to
At = max f0; At�1 � nxt�1g

We solve this problem by the backward solution method. While numerical
solutions can be found for any �, for analytical purposes, we prefer to obtain
a closed-form solution, and to do so, it is convenient to set � = 1=2. At the
beginning of perod 3; given A3; the maximization of n�3 yields

x�
3
=

1

4
A3

and hence

��
3
=

1

4
A3 =

1

4
max f0; A2 � nx2g
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Turning to period 2, given A2, the objective is to �nd x2 that maximize
n�2 + n��

3
. The solution is

x�
2
= D2A2

where

D2 =
1

4

 
1

1 + n
4

!2

=
�

2

4 + n

�2
<

1

n

Hence
��
2
+ ��

3
= B2A2 = B2max f0; A1 � nx1g

where
B2 =

n

4(4 + n)

Finally, in period 1, one seeks to maximize n�1 + n(��
2
+ ��

3
). This yields

x�
1
= D1A1

where

D1 =
1

4

0
B@ 1

n
4
+
�
1 + n

4

�2
1
CA
2

=
�

8 + 2n

16 + 12n+ n2

�2
<

1

n

The optimal value of the objective function is

W = nA1

h
D1 �D

1=2
1 +B2(1� nD1)

i

and A�
2
and A�

3
are both strictly positive. (It can be veri�ed that any policy

that drives A2 or A3 to zero will yield a lower welfare.)

3.2 Open loop Nash equilibria, or equilibria with pre-

commitment

We now consider a game among the n �rms. In this subsection, we restrict
attention to open loop Nash equilibria (OLNE), also called equilibria with
precommitment. That is, we allow �rms to have only open-loop (also called
precommitment) strategies. Given A1, an open-loop strategy of �rm i is a
triple (xi1; xi2; xi3) � si that represents the planned path of input levels for
the three periods. It is important to note that, by de�nition of an open-loop
strategy, the future input levels xi2 and xi3 must not be made conditional
on the observed stock levels A2 and A3. (It is as though �rms would not be
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able to observe A2 and A3.) Each �rm must precommit itself to a strategy,
from the outset. Firm j takes the strategies si (i 6= j) as given, and chooses
(xj1; xj2; xj3) to maximize

�j =
3X

t=1

�jt (3)

subject to

At+1 = max
n
0; At �X�j

t � xjt
o

t = 1; 2; A1=given, (4)

where
X�j

t �
X
i6=j

xit

(obtained from the strategies si , i 6= j) is taken as given. The solution of
this problem yields (x�j1; x

�

j2; x
�

j3) � s�j as a best reply to the strategies si

(i 6= j _).
An OLNE is de�ned as a strategy pro�le (bs1; bs2; bs3; :::; bsn) such that for

each j, bsj is a best reply to the strategies (i 6= j _). In what follows, we
restrict attention to symmetric OLNE, where all �rms use the same strategy
in equilibrium. Notice that each �rm, knowing the equilibrium strategies, can
predict correctly (at least in the case of unique equilibrium) the equilibrium
values of A2 and A3. By de�nition of a precommitment strategy, if the
observed values of A2 and A3 for some reason turn out to be di�erent from
the predicted values, the �rm will not change its committed levels of inputs
x�j2; x

�

j3. Clearly, such precommitment may make sense if all �rms believe that
by having every players making binding promises to follow their strategy to
the end, there will be no deviation of the observed values of A2 and A3 from
their equilibrium values, and that this is to their advantage. (Implicit in
the concept of precommitment equilibrium is an enforcement mechanism,
and an enforcement authority. For example, duelists may agree not to carry
extra weapons, two boxers may agree not to kick, and one could expect such
precommitment to be honoured if the penalty for violation is su�ciently
great.)

To �nd a symmetric OLNE, we begin by solving problem (3) for �rm j.
It is convenient to use the backward solution method. In period 3, given A3,
since there is no future ahead, the optimal xj3 is

x�j3 =
1

4
A3

10



and

��j3 =
1

4
A3

In period 2, given A2 � 0 and X�j
2 � 0, �rm j seeks to maximize

[xj2A2]
1=2 � xj2 +

1

4
max

n
0; A2 �X

�j
2 � xj2

o

The solution depends on whether the term A2�X
�j
2 �x�j2 is positive or not.

If this term is zero or negative, then A3 = 0 and period 3 becomes irrelevant,
and hence

x�j2 =
1

4
A2 and �

�

j2 + ��j3 =
1

4
A2 (5)

If A2 �X�j
2 � x�j2 is positive, then

x�j2 =
4

25
A2 and �

�

j2 + ��j3 =
9

25
A2 �

1

4
X
�j
2

(If X�j
2 � (21=25)A2, then x

�

j2 =
4

25
A2 is not a solution, because if it were a

solution, it would give A3 = 0, yielding ��j2 + ��j3 < (1=4)A2; it follows that
if n � 7, there can be no symmetric equilibrium with x�j2 =

4

25
A2 > 0.)

In period 1, given A1 and X
�j
1 , �rm j seeks to maximize

[xj1A1]
1=2 � xj1 + ��j2 + ��j3

The solution depends on the sign of A1�X
�j
1 and the sign of A1�X

�j
1 �X�j

2 :
(a) If A1 �X

�j
1 � 0, then periods 2 and 3 become irrelevant, and hence

x�j1 = (1=4)A1 = ��j1 + ��j2 + ��j3:

(b) If A1 � X�j
1 > 0 but A1 � X�j

1 � X�j
2 � 0 then period 3 becomes

irrelevant, and hence �rm j maximizes

[xj1A1]
1=2 � xj1 +

1

4
max

n
0; A1 �X

�j
1 � xj1

o

we thus have

x�j1 =
4

25
A1 and �

�

j1 + ��j2 + ��j3 =
9

25
A1 �

1

4
X�j

1 + 0

(c) If A1 �X�j
1 > 0 and A1 �X�j

1 �X�j
2 > 0, then �rm j maximizes

[xj1A1]
1=2 � xj1 +

1

4
A2 (6)
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if it chooses A3 to be zero. In this case, it obtains

x�j1 =
4

25
A1 and �j =

9

25
A1 �

1

4
X
�j
1

(d) On the other hand, if A1�X�j
1 > 0 and A1 �X�j

1 �X�j
2 > 0, and if

the �rm �nds its optimal to have A3 > 0, then the solution is obtained from
maximizing the expression

(xj1A1)
1=2+

h
xj2

�
A1 � xj1 �X�j

1

�i1=2
+
h
xj3

�
A1 � xj1 � xj3 �X�j

1 �X�j
2

�i1=2

�
3X

t=1

xjt (7)

First order conditions for (7) with respect to xj3,xj2 and xj3, in that order,
are "

A1 � xj1 � xj3 �X�j
1 �X�j

2

xj3

#1=2
= 2

"
A1 � xj1 �X

�j
1

xj2

#1=2
�

"
A1 � xj1 � xj3 �X

�j
1 �X

�j
2

xj3

#�1=2
= 2

and

"
A1

xj1

#1=2
�

"
A1 � xj1 �X�j

1

xj2

#�1=2
�

"
A1 � xj1 � xj3 �X�j

1 �X�j
2

xj3

#�1=2
= 2

from which

xj3 =
1

4

�
A1 � xj1 � xj3 �X�j

1 �X�j
2

�

xj2 =
4

25

�
A1 � xj1 �X

�j
1

�
and

xj1 = A1

�
10

29

�2
= 0:1189A1

De�ne an interior symmetric OLNE as a symmetric OLNE with xjt > 0
for all j 2 N and for all t = 1; 2; 3. From the above observations, we obtain
the following proposition.

Proposition 1: (interior symmetric OLNE)

12



An interior symmetric OLNE exists if and only if n � 6. The equilibrium
open-loop strategy of the representative �rm j is

xj1 =
�
10

29

�2
A1 > 0

xj2 =
4

25

"
1� n

�
10

29

�2#
A1 > 0

xj3 =
1

4

�
1�

4n

25

� "
1� n

�
10

29

�2#
A1 > 0

Along the resulting equilibrium path, the state variable At evolves as follows

A2 =

"
1� n

�
10

29

�2#
A1 > 0

and

A3 =
�
1�

4n

25

�
A2 > 0:

Proof: omitted.
Proposition 2: (non-interior symmetric OLNE, with positive input in

period one only)
For n � 4, the following is an OLNE:

xj1 =
1

4
A1 > 0

xj2 = xj3 = 0

Along the resulting equilibrium path, the state variable At evolves as follows:
A2 = A3 = 0:

Proof: obvious.
Proposition 3: (non-interior symmetric OLNE, with positive inputs in

periods one and two only)
For n = 5 and n = 6, there is a third symmetric OLNE, with

xj1 =
4

25
A1 > 0

and

xj2 =
1

4

�
1�

4n

25

�
A1 > 0; xj3 = 0:

13



Along the resulting equilibrium path, the state variable At evolves as follows

A2 =
�
1�

4n

25

�
A1 > 0; A3 = 0:

Proof: obvious.
Remark: Propositions 1, 2 and 3 imply that there are multiple sym-

metric equilibria for n = 4; 5; 6. These equilibria are Pareto rankable. For
example, if n = 5, then the equilibria in propositions 1,2, and 3 give total
pro�t �j = 0:343A1, �j = 0:328A1 and �j = 0:250A1 respectively.

3.3 Markov-perfect Nash equilibria, or equilibria with-

out precommitment

There is an obvious weakness in the concept of OLNE. If, indeed, we were
to assume that all input decisions have to be made at the outset, then such
an equilibrium would make a good deal of sense. It results in an allocation
such that, after the event, no player has reason to regret his choice. Each,
on reection, can be imagined as thinking,\given everyone else's strategy led
to X��j

1 and X��j
2 , my chosen strategy (x�j1; x

�

j2; x
�

j3) was my most pro�table.
If I were to go through this exercise again, I would not therefore have any
incentive to behave otherwise." Even in a model of sequential choices, this
argument may continue to make sense if the realized values of A2 and A3

cannot be observed until after all choices are made. However, if At (t = 2; 3)
can be observed before the decision xjt (t = 2; 3) are made, then it makes
sense to allow j to condition his input level on the observed stock value. If j
is able to do this, it makes sense to allow j to acknowledge that other players
can, and rationally will, do so.

The above argument leads us to turn to equilibria with feedback, also
called Markov perfect Nash equilibria (MPNE). We look for strategies that
condition each period input level on the current level of e�ectiveness At.
A feedback strategy is a triple (xj1(A1); xj2(A2); xj3(A3)) � �j where each
xjt(:) is a rule that prescribes �rm j's input level for period t in response to
the observed e�ectiveness level At. A MPNE is de�ned as a strategy pro�le
(b�1; b�2; b�3; :::; b�n) such that for each j, b�j is a sub-game perfect best reply to

the strategies b�i(i 6= j _). Sub-game perfectness means that, at any time t
(t = 1; 2; 3) and given any non-negative number At, it is in the best interest
of �rm j to continue using (the remaining part of ) its strategy b�j, given that

other �rms continue using (the remaining part of ) their strategies b�i(i 6= j _).

14



In what follows, we restrict attention to symmetric MPNEs, where all
�rms use the same strategy in equilibrium.

Firm j takes the strategies �i (i 6= j) as given, and chooses the rules
(xj1(:); xj2(:); xj3(:)) to maximize

�j =
3X

t=1

�jt

subject to

At+1 = max
n
0; At �X�j

t (At)� xjt
o

t = 1; 2; A1=given,

where
X�j

t (At) �
X
i6=j

xit(At):

Again, we solve this problem backwards, starting from period 3.
In period 3, given A3;the optimal choice for �rm j is simple, because this

is the last period, there is no future to worry about. Thus �rm j has the
dominant choice:

xj3(A3) =
1

4
A3 (8)

yielding the pro�t

��j3(A3) =
1

4
A3 � V �

j3(A3)

Turning to period 2, given A2, the objective is to maximize

V2 = (xj2A2)
1=2 � xj2 + V �

j3(A3)

where
A3 = min

n
0; A2 � xj2 �X�j

2 (A2)
o

It is convenient to treat separately two possibilities, according to whether
the outcome A3 that would result from X�j

2 (A2) and from the choice of xj2
is positive or zero. If the outcome is A3 = 0, then period 2 is e�ectively the
last period, and it must be the case that

xj2(A2) =
1

4
A2 (9)

and thus

�j2 + �j3 =
1

4
A2: (10)
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This outcome is possible only if n � 4 (for otherwise (9) would not result in
A3 = 0).

Alternatively, A3 > 0; in which case �rm j's optimal input level xj2 must
maximize

(xj2A2)
1=2 � xj2 +

1

4

h
A2 � xj2 �X�j

2 (A2)
i

yielding

xj2(A2) =
4

25
A2 (11)

Clearly, this is consistent with a symmetric equilibrium with A3 > 0 only if
n � 6.

For n > 6; we cannot have xj2(A2) =
4

25
A2 as a best reply for xi2(A2) =

4

25
A2 (i 6= j) for it would result in A3 = 0 and hence �j2+ �j3 =

4

25
A2, which

is inferior to (10).
It remains to consider the case n � 6: In this case there are two candidate

rules for period 2: namely (a) rule (11) for all j, and (b)rule (9) for all j. To
show that (a) constitutes an equilibrium for period 2 (given that in period
3, eveyone will choose the rule (8)), we must show that given that all j 6= k

choose rule (11), then �rm k has no interest to deviate from it. It turns out
out that deviation is not optimal for k in the case n � 6. For (b), matters
are not so simple. It can be veri�ed that for n = 5 and also for n = 6, if
every j 6= k uses rule (9), then k will use rule (9), too. For n = 4; 3;or 2, if
every j 6= k uses rule (9), then k will use rule (11) instead.

Thus we have obtained the following proposition for all the subgames
starting with A2 > 0 :

Proposition 4: (symmetric MPNE starting in period 2)
Given any A2 > 0,
(i) if n � 7, then the only symmetric MPNE is the strategy (xj2(A2),xj3(A3)) =h

1

4
A2;

1

4
A3

i
;resulting in A3 = 0 and the resulting pro�t is

�j2 + �j3 =
1

4
A2

(ii) if n � 4, then the only symmetric MPNE is the strategy (xj2(A2),xj3(A3)) =h
4

25
A2;

1

4
A3

i
, resulting in A3 > 0 and the resulting pro�t is

�j2 + �j3 =
�
49� 4n

100

�
A2

16



(iii) if n = 5 or n = 6, then there are two symmetric MPNEs :

(a) (xj2(A2); xj3(A3)) =
�
1

4
A2;

1

4
A3

�

which yields A3 = 0 and �j2 + �j3 =
1

4
A2;

(b) (xj2(A2); xj3(A3)) =
�
4

25
A2;

1

4
A3

�

which yields A3 > 0 and �j2 + �j3 =
29

100
A2 if n = 5, and �j2 + �j3 =

25

100
A2 if

n = 6:
Proof: omitted.
We are now ready to tackle the problem of period 1. In view of proposition

4, we need to consider three cases:
Case A: n � 4
Case B: n � 7
Case C: n = 5 or 6.
CASE A: n � 4
Firm j's problem in period 1 is to �nd xj1 that maximizes

(xj1A1)
1=2 � xj1 +

�
49� 4n

100

�
max

n
0; A1 � xj1 �X�j

1 (A1)
o

given A1 and givenX
�j
1 (A1). Again, there are two possibilities in a symmetric

equilibrium. Either
(i) A1 � xj1 �X�j

1 (A1) > 0, implying A2 > 0, or
(ii) A1 � xj1 �X

�j
1 (A1) � 0, implying A2 = 0.

Under (i), the �rst order condition yields

xj1(A1) =
�

50

149� 4n

�2
A1 (12)

while under (ii), the �rst order condition yields

xj1(A1) =
1

4
A1 (13)

which, in Case A, is consistent A2 = 0 only if n = 4 (given symmetry in the
behavior of �rms). However, it can be veri�ed that (13) is not consistent
with a symmetric equilibrium for n = 4: if all other �rms choose (13), then

17



�rm j can deviate by choosing (12) and, thus ensuring that A2 > 0, and
earning a higher value for �j1 + �j2 + �j3, amounting to

�
50

149� 4n

�
A1�

�
50

149� 4n

�2
A1+

�
49� 4n

100

�"
1�

n� 1

4
�
�

50

149� 4n

�2#
A1

which exceeds the pro�t it would earn by following (13), which is �j1+�j2+
�j3 =

1

4
A1 + 0 + 0.

Proposition 5A: (symmetric MPNE starting in period 1, when n � 4)
For n � 4, the only symmetric MPNE is

(xj1(A1); xj2(A2); xj3(A3)) =

(�
50

149� 4n

�2
A1;

�
4

25

�
A2;

�
1

4

�
A3

)

CASE B: n � 7
In this case, it is clear that xj1(A1) =

1

4
A1 for all j yields a symmetric

MPNE, resulting in A2 = 0. Does there exist other symmetric MPNEs ? In
view of part (i) of proposition 4, �rm j's pro�t is

(xj1A1)
1=2 � xj1 +

�
1

4

�
max

n
0; A1 � xj1 �X�j

1 (A1)
o

Now either
(i) A1 � xj1 �X�j

1 (A1) > 0, implying A2 > 0, or
(ii) A1 � xj1 �X�j

1 (A1) � 0, implying A2 = 0.
Under (i) the �rst order condition gives xj1 =

4

25
A1, which is inconsistent

with A2 > 0, since n � 7. So the only possibility is (ii), under which the �rst
order condition gives xj1(A1) =

1

4
A1. Therefore, we obtain

Proposition 5B: (symmetric MPNE starting in period 1, when n � 7)
For n � 7, the only symmetric MPNE is

(xj1(A1); xj2(A2); xj3(A3)) =
��

1

4

�
A1;

�
1

4

�
A2;

�
1

4

�
A3

�

and along the equilibrium play, A2 = A3 = 0.
CASE C: n = 5 or n = 6.
Applying an argument similar to the one used to establish propositions

5A and 5B, we obtain
Proposition 5C: (symmetric MPNE starting in period 1, when n = 5

or n = 6)
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(i) For n = 6, there are three symmetric MPNEs, all yielding the same
payo� (= 1

4
A1). They are

Equilibrium #1:

(xj1(A1); xj2(A2); xj3(A3)) =

(�
50

149� 4n

�2
A1;

�
4

25

�
A2;

�
1

4

�
A3

)

implying positive inputs xjt for all t = 1; 2; 3.(Since A2 and A3 are positive
when �rms use this equilibrium pro�le of strategies.)

Equilibrium #2:

(xj1(A1); xj2(A2); xj3(A3)) =
��

1

4

�
A1;

�
4

25

�
A2;

�
1

4

�
A3

�

implying positive inputs only in period1:(Since A3 = A2 = 0 when �rms use
this equilibrium pro�le of strategies.)

Equilibrium #3:

(xj1(A1); xj2(A2); xj3(A3)) =
��

1

4

�
A1;

�
1

4

�
A2;

�
1

4

�
A3

�

implying positive inputs only in period1:(Since A3 = A2 = 0 when �rms use
this equilibrium pro�le of strategies.)

(i) For n = 5, there are four symmetric MPNEs, yielding di�erent pay-
o�s.

Equilibrium #1:

(xj1(A1); xj2(A2); xj3(A3)) =

(�
50

149� 4n

�2
A1;

�
4

25

�
A2;

�
1

4

�
A3

)

implying positive inputs in all three periods1:(Since A2 and A3 are positive
when �rms use this equilibrium pro�le of strategies.) The pay-o� is 0:3095A1.

Equilibrium #2:

(xj1(A1); xj2(A2); xj3(A3)) =
��

4

25

�
A1;

�
1

4

�
A2;

�
1

4

�
A3

�

implying positive inputs in periods 1 and 2:(Since A3 = 0 when �rms use
this equilibrium pro�le of strategies.) The pay-o� is 0:25A1

Equilibrium #3:

(xj1(A1); xj2(A2); xj3(A3)) =
��

1

4

�
A1;

�
4

25

�
A2;

�
1

4

�
A3

�
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implying positive inputs only in period1:(Since A3 = A2 = 0 when �rms use
this equilibrium pro�le of strategies.) The pay-o� is 0:25A1

Equilibrium #4:

(xj1(A1); xj2(A2); xj3(A3)) =
��

1

4

�
A1;

�
1

4

�
A2;

�
1

4

�
A3

�

implying positive inputs only in period1:(Since A3 = A2 = 0 when �rms use
this equilibrium pro�le of strategies.) The pay-o� is 0:25A1

Remark: The most notable feature that arises when n = 5 is that, not
only are there multiple equilibria, but one equilibrium Pareto dominates the
others.

4 A Continuous Time Model

We now turn to a continuous time model with an in�nite horizon. The
advantage of this approach is that a diagrammatic representation of equilibria
can be obtained. Furthermore, it avoids the problem of an abrupt end which
arises when a �nite horizon is imposed.

There are n �rms using a pesticide as an input. Let N � f1; 2; :::; ng.
Again, let A(t) denote the e�ectiveness of the pesticide at time t, and xi(t) be
the dosage level applied by �rm i at time t. We assume that at any moment
of time, the higher the current aggregate dosage, the greater the decline in
e�ectiveness. Speci�cally, we assume the relationship takes the simple linear
form

_A(t) = �b
X
i2N

xi(t): (14)

The �rms produce a homogenous good. Output of �rm i at time t is
denoted by Qi(t) and is determined by a production function of the form

Qi(t) = (A(t)xi(t))
�

and �rm i's pro�t is

�i(t) = p(A(t)xi(t))
� � cxi(t)

where p, the price of the good, and c, the cost of of a dose of pesticide, are
assumed to be exogenously determined.
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4.1 The social optimum

Suppose there is a social planner who wishes to maximize

W =
Z
1

0

X
i2N

�i(t)e
�rtdt

where r > 0 is the rate of discount. The maximization is subject to (14) and
the boundary conditions

A(0) = A0 (15)

lim
t!1

A(t) � 0. (16)

This is an optimal control problem2 that resembles the problem of optimal
extraction of a non-renewable resource3. A major di�erence is that in the
present model, the state variable A appears in the production function in a
multiplicative form. For a closed form solution, we set c = 0 in what follows.
(If c > 0 then numerical and/or qualitative solution methods must be used.)

The following proposition describes the solution of the social planner's
problem.

Proposition 6: The optimal time path of A(t) is

A(t) = A0 exp

"
�rt

2(1� �)

#
(17)

and the optimal doses are

nbxj(t) =
rA(t)

2(1� �)

Thus both A(t)and xj(t) are monotone decreasing and approach zero asymp-
totically. The value of discounted aggregate pro�t ow of is

W = KA2�
0

(18)

where

K = p

"
n(1� �)

r

#1�� �
1

2b

��

2See Leonard and Long (1992) for a treatment of optimal control theory with economic

applications.
3See, for example, Kemp and Long (1980).
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Proof: omitted. (Verify that the necessary and su�cient conditions for
the general in�nite horizon optimal control problem, as stated in Leonard
and Long (1992, Chapter 9) are satis�ed, when the shadow price is  (t) =
2�A(t)2��1.)

4.2 Markov perfect Nash equilibria

In this section, we �nd Markov perfect Nash equilibria for the game among
the n �rms. We restrict attention to stationary Markov strategies. We de�ne
a stationary Markov strategy for player j as a function �j(:) which speci�es
the input level xj(t) as a function of the currently observed value of A, i.e.,
of A(t):

xj(t) = �j(A(t)).

In our model, the inuence of the past at any time t is summed up in the
value of the state varible A(t): Our formulation is restrictive in that we do
not allow a �rm to threaten to punish other �rms on the basis of the history
of their actions. (Formally, this is as if each �rm could only observe the
current value A(t) and had no memories of past actions of other �rms, nor
of the history of A.) We believe that our restriction is reasonable, because
if the strategy space is enlarged, it is likely that a result similar to the folk
theorem4 in supergames will apply: namely, the cooperative outcome can be
supported by suitable threat strategies, if the rate of discount is not too high.
The fact that cooperative outcomes do not seem happen in practice seems to
indicate that theorists are sometimes too generous in endowing �rms with a
large set of strategies to choose from.

We de�ne a Markov perfect Nash equilibrium (MPNE) as a pro�le of
stationary Markov strategies (��

1
; ��

2
; ::; ��n) such that such that for any �rm

j, the following inequality holds for all initial state A0 and all stationary
Markov strategies �j(:):

Jj(�
�

j ; �
�

�j; A0) � Jj(�j; �
�

�j; A0)

where ���j is the vector of strategies of all �rms other than j, and where

Jj(�j; �
�

�j; A0) =
Z
1

0

p
h
A(t)�j(A(t))

i�
exp(�rt)dt

4See, for example, Fudenberg and Tirole (1991).
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subject to (15),(16) and

_A(t) = �b�j(A(t))� b
X
i6=j

��i (A(t)).

Analysis of this problem leads to the following proposition.
Proposition 7:

(i) If 1�n� > 0, then there exists a MPNE where the equilibrium strategy
of each �rm is a linear function of the stock

xj(t) =
rA(t)

2b(1� n�)
� ��j(A(t))

and the resulting time path of the state variable is

A(t) = A0 exp

"
�rnt

2(1� n�)

#
(19)

so that A(t) tends to zero only asymptotically. The value of the integral of
discounted pro�t of each �rm is

Jj(A0) = kA2�
0

(20)

where

k � p

�
1� n�

r

�1�� � 1

2b

��

(ii) If 1�n� > 0 and n � 2, then in addition to the the linear stationary
Markov strategy as described above, there are other MPNEs in which non-
linear stationary Markov strategies are played. These equilibria lead to the
vanishing of A(t) in �nite time.

(iii) If 1 � n� < 0, then the only \equilibrium" is that all �rms try to
exhaust A0 at the �rst instant.

Proof: Omitted. See Appendix 1.
Remark: Comparing proposition 7 with proposition 6, we see that the

e�ectiveness of the pesticide declines too fast when there is lack of coopera-
tion.

4.3 Open-loop Nash equilibria

An open-loop strategy must specify the time path of input xj as function
of time t and of parameters of the model, such as p,n,�,r, and A0. (Note
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that A0 is treated as a parameter, because it is given, while A(t) is not a
parameter, for t > 0.) Formally, we de�ne an open-loop strategy for player
i as a piece-wise continuous function gj(:) that speci�es for each t � 0 a
value xj(t) � 0. An open-loop Nash equilibrium is a pro�le of strategies
(g�

1
; g�

2
; :::; g�n) such that for all player j 2 N , and for all open-loop strategies

gj, the following inequality holds

Jj(g
�

j ; g
�

�j) � Jj(gj; g
�

�j)

where g�
�j � (g�

1
; g�

2
; ::::; g�j�1; g

�

j+1; :::; g
�

n) and where

Jj(gj; g
�

�j) �
Z
1

0

p [A(t)gj(t)]
� exp(�rt)dt

such that
A(0) = A0

lim
t!1

A(t) � 0

and
_A(t) = �bgj(t)� b

X
i6=j

g�i (t).

The following proposition can be proved:
Proposition 8:

(i) If 1�n� > 0, then there exists a symmetric OLNE where the open-loop
strategy of the representative �rm j satis�es:

bxj(t) =

"
r

2(1� n�) + (n� 1)

#
A0 exp

"
�nrt

2(1� n�) + (n� 1)

#
� bg�j (t)

(21)
and the resulting time path of the state variable is

A(t) = A0 exp

"
�nrt

2(1� n�) + (n� 1)

#
(22)

(ii) If 1 � n� > 0 and n > 2, there exists other OLNEs with �nite
exhaustion time.

(iii) If 1 � n� < 0 then the only \equilibrium" is that all �rms try to
exhaust A0 at the �rst instant.

Proof: Omitted. (It is similar to the proof of proposition 7.)
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Remark:From (21) and (22), we can express the outcome of the OLNE
in the feedback form:

nbxj(t) =

"
nr

2(1� n�) + (n� 1)

#
A(t) (23)

which is not to be confused with a Markov strategy.
Comparing part (i) proposition 8 with that of proposition 7 and with

proposition 6, we see that while in all three cases the e�ectiveness declines to
zero only asymptotically, lack of cooperation results in faster rates of decline
than the one which is socially optimal. In addition, comparing MPNE and
OLNE, we notice that in a MPNE A(t) declines faster than in an OLNE:
This is intuitively plausible, since in a MPNE each player knows that other
players will use less input if the e�ectiveness is low. Therefore each wants to
use more input, so as to reduce the future input levels of other, thus having
more for himself.This is similar to a Cournot game with negative conjectural
variations: each �rm thinks that if it were to produce more, the other will
reduce output, and as a result of that reasoning, they are further away from
the cooperative outcome.

5 Concluding Remarks

There is a large literature that investigates implications of positive exter-
nalities owing from current productive activities to enhanced future pro-
ductivity. This paper addresses the opposite situation, in which the present
applications of inputs lowers the e�ectiveness of future doses of those same
inputs. It seems clear that antibiotics and pesticides are such inputs.

We have not addressed the question of optimal regulation. It is possible
to achieve the social optimum by designing a tax rule that determines the
tax rate on input use at any time as the function of the level of the state
variable at that time. (See Benchekroun and Long (1998) for such a scheme,
in the context of a polluting oligopoly.) Another issue is the optimal usage
of the existing drug when a new drug is expected to become available in the
future. We have also abstracted from the population dynamics of pests and
bacteria. These are interesting topics for future research.

The analysis of this paper has focused on the case where the same in-
dividuals or �rms that make decisions today will have to su�er from the
consequences of such decisions. An issue which we have neglected is that
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quite often the later adverse e�ects may be borne by individuals other than
those responsible for the initial decision to apply the input, thereby consti-
tuting a classic externality problem. It is not clear to us how signi�cant these
sources of ine�ciency may be, for the simple reason that they have, so far,
attracted little interest. We hope that this paper will, if nothing else, stim-
ulate others to give these issues more serious and sustained attention than
they have hitherto received.

APPENDIX

Markov-Perfect Nash Equilibrium

The Hamilton-Jacobi-Bellman equation for �rm j is

rVj(A) = max
xj

n
p(Axj)

� � bV 0

j (A) [xj + (n� 1)�i(A)]
o

(A1)

This yields the �rst order condition

�pA�x��1j = bV 0

j (A) (A2)

From (A2) and the assumption of symmetry, (A1) becomes

rVj(A) = p [A�(A)]� (1� n�) (A3)

Since each �rm can always ensure that Vj(A) � 0, it follows that if 1�n� < 0
then (A3) cannot be satis�ed. Thus no (non-degenerate) MPNE exists if
1� n� < 0 :

Consider now the case 1� n� > 0. Let x(A) � �(A). Di�erentiate (A3)
with respect to A

rV 0

j (A) = (1� n�)p�
h
A��1x(A)� + A�x(A)��1x0(A)

i
(A4)

From (A4) and (A2) we get

x0(A) =
r

b(1� n�)
�
x

A
(A6)

The solution of (A5) is

x(A) =
rA

2b(1� n�)
+
C

A
(A6)
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where C is the constant of integration.
The integral curve for (A6) is depicted in Figure 1. If C = 0, we have the

linear strategy described in part (i) of proposition 7. If C > 0, then x(A) is a
non-monotone function of A and as A tends to zero, x tends to in�nity: This
implies that A becomes zero in �nite time. There are in�nitely many such
equilibria. Finally, if C < 0, then x will become zero when A is still positive,
and such a strategy cannot be optimal. Equilibrium therefore requires that
C � 0.
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