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Abstract

This paper studies the scope for cross-border contagion among a set of 73 European banking groups

and analyses geographical patterns of loss-propagation from end-2008 until end-2012. The analysis relies

on an enriched model of sequential solvency and liquidity cascades in a network setting. We look at

the distribution of simulation outcomes resulting from (i) a common market shock on (listed) banks'

capital, and (ii) an exogenous bank default ; the distributions are obtained over 100 di�erent simulated

networks of long and short-term exposures. To obtain a realistic representation of how European banks

are connected through their long- and short-term claims, we exploit for the �rst time a unique dataset

of interbank money market transactions, with various maturities, estimated from TARGET2 payment

data. And we conduct an econometric analysis of both the network and the balance sheet determinants

of contagion in di�erent networks over �ve years.
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1 Introduction

The 2007-2008 �nancial crisis revealed the fragility of �nancial institutions worldwide. More

importantly, it disclosed the major role of interconnectedness among banks in the propagation of

�nancial distress. Interconnections, due to bilateral contractual obligations but also to exposure to

common risk factors and sudden collapses in market con�dence, have grown dramatically in the

run-up to the crisis. 1 While higher interconnectedness is a crucial means of e�cient risk transfer, it

may also lead to contagious default cascades : an initial shock may propagate throughout the entire

banking system via chains of defaults and liquidity shortages that follow highly dynamic patterns.

Direct and indirect linkages among banks arose as a key component of �nancial contagion in the

European Union, as revealed �rst by the default of Lehman Brothers in September 2008, and then

by the euro area sovereign debt crisis. Especially after the European Banking Authority's disclosure

of the extent of European banks' common exposures to stressed sovereigns in 2011[EBA, 2011a], the

potential for contagion e�ects through interbank transactions has taken a peculiar - geographical -

dimension in the euro area, with banks reducing their exposure particularly to banks headquartered

in the periphery of the euro area (see, e.g.,Abascal et al. [2013] who measure fragmentation in

interbank market and three other �nancial markets (sovereign debt, equity and the CDS market for

�nancial institutions)).

This paper studies the scope for cross-border contagion among a set of 73 European banking

groups, and analysis geographical patterns of shock propagation at a European scale from end-2008

until end-2012. Cross-border interbank exposures are generally hard to obtain. National supervisors

can have at best a partial view of the largest long-term credit claims of supervised banks via credit

registers. 2 To circumvent the unavailability of accurate information on domestic and cross-border

interbank exposures, and obtain a realistic representation of how European banks are connected

through their long- and short-term claims, we exploit for the �rst time a unique dataset of interbank

money market transactions, with various maturities, estimated from TARGET2 payment data (see

Arciero et al. [2013]). More speci�cally, we employ money market loans with maturities up to one

month to reconstruct the network of short-term interbank linkages, while we use information on the

size and frequency of money market loans with longer maturities to construct a realistic probability

map of long-term bank-to-bank exposures. This map, together with the amount of individual banks'

aggregate loans to other banks, are used to simulate a large number of long-term exposure matrices

through a novel methodology proposed by Halaj and Kok [2013].

The extent of interbank contagion is assessed relying on Fourel et al. [2013] model of sequential

solvency and liquidity cascades in a network setting. More speci�cally, we look at the distribution of

simulation outcomes resulting from a common market shock on (listed) banks' capital, coupled with

1. Total cross-border banking �ows rose several-fold from 1978 to 2007 compared to their long-term average, see

Minoiu and Reyes [2011].

2. For instance, the German credit register contains quarterly data on large bilateral exposures - derivative, on-

and o�-balance sheet positions - above a threshold of EUR 1.5 m. The French "grands risques" data include individual

banks' quarterly bilateral exposures that represent an amount higher than 10% of their capital or above EUR 300 m.

Italian banks submit to the Banca d'Italia their end-of-month bilateral exposures to all other banks.
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an exogenous bank default ; the distributions are obtained over 100 di�erent simulated networks of

long- and short-term exposures. We observe the total number of defaulted banks after several rounds

of solvency and liquidity contagion, and the total capital loss experienced by a certain country's

banking sector when contagion is triggered by the default of a foreign bank. Heat maps are used to

assess, on the one hand, which banking sectors are the most "systemic" in terms of the losses that

the failure of one of their banks can impose to foreign countries' banks and, on the other, to identify

which banking sectors are the most prone to cross-border contagion from European counterparties.

A large literature exists that relies on counterfactual simulations based on a network setting

to estimate the potential for interbank contagion (see Upper [2011] for a comprehensive survey).

Notwithstanding the increasingly international dimension of contagion, however, these simulations

have so far focused essentially on national banking sectors, estimating their frialty/resilience only

at one speci�c point in time. Moreover, only very recently have economists started to integrate

behavioral foundations into their modelling frameworks, hence providing di�erent contagion

channels, and to consider the impact of common shocks on the network of interbank loan exposures,

possibly resulting in concurrent losses for banks.

Our study contributes to this literature both from a modelling and an empirical point of view.

With regard to the modelling part, by using the enriched model of default cascades in a network

set up of Fourel et al. [2013] we take into account one possible form of banks' reaction to distressed

�nancial conditions. Notably, banks experiencing losses - either due to a market shock or the default

of one of their bank-counterparties - but still solvent, will start hoarding liquidity in the short-term

interbank money market. Our sequential algorithm thus enables us to consider (i) fundamental losses

due to exposure to common risk factors, (ii) solvency contagion, whereby banks su�er losses due to

their long-term exposures to other banks, and (iii) liquidity contagion, by which banks experience

liquidity withdrawals from counterparties in the interbank money market. While we do not model

other important forms of banks' endogenous reaction to a shortage of funding (such as the sale

of part of their assets possibly igniting a market �re-sale), we do not see a major drawback in

considering banks' capital as constant throughout the rounds of contagion as raising capital under

stressed market conditions and at very short notice is notoriously very hard (if possible at all).

Empirically, the paper enriches the existent simulations studies in several respects. First,

considering both long- and short-term interbank exposures among a large set of European banks, it

addresses a number of theoretical and empirical questions that arise once one moves from domestic

only to cross-border exposures. For instance, the home bias and international lending patterns are

accounted for when the matrices of exposures are reconstructed relying on actual interbank trading

data. Thus the international scope of our empirical exercise enables us to focus not only on bank-

to-bank contagion, but also on the geographical patterns of �nancial distress and the distribution

of losses EU-wide.

Second, methodology-wise we consider the joint impact on the banking system of a common

shock (on stock returns of listed banks) and an idiosyncratic shock (i.e. a bank default). This allows

for a more realistic stress scenario, since correlated exposures have one more time proved to be a
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major source of systemic risk in the 2007-2009 �nancial crisis. 3 Moreover, the use of the algorithm

developed by Halaj and Kok [2013] to simulate, for each year-end, a large number of interbank

networks increases remarkably the realism of our results. Di�erently from existing simulations

of national contagion, losses propagate upon highly sparse and concentrated interbank network

structures, which reveal the empirically documented core-periphery property of interbank exposures,

hence a high heterogeneity across banks. 4 Also, running the stress scenario over a large number

of simulated networks - all very close to the "true" one - we obtain for each year a distribution

of contagion results, i.e. VaR-like metrics. In this respect, our results account for the fact that the

structure of a stressed interbank network may change substantially over very short time horizons,

so that what matters is not a particular state of the interbank network at one date as such, but a

probability distribution over possible network structures.

Third, with regard to the data, we reconstruct interbank exposures matrices based on a unique

source of information on interbank relationships, namely all euro-denominated money market loans

settled via the Eurosystem's Large Value Payment System TARGET2. Our simulations are repeated

�ve years in a row, so that, for the same shock scenario, we can track our results over time and

estimate whether the European banking sector has strengthened to interbank contagion over the

last years.

Fourth, we conduct an econometric analysis of both the network and the balance sheet

determinants of contagion. First, we analyze the determinants of contagion at a system level,

therefore considering the European banking sector as one system. Second, we re�ne the analysis

at a more granular level by investigating the country-level determinants of cross-border contagion.

Up to our knowledge, we the �rst who such an analysis with the use of the real data.

The remainder of this article is structured as follows. In section 2, we make an overview of the

related literature. In section 3, we present the theoretical model for the imputation of losses and the

liquidity hoarding mechanism. In section 4, we describe the interbank exposures data and present the

algorithm to generate interbank networks. The results of simulations are presented and commented

on in section 5. Section 6 discusses an econometric exercise. Section 7 introduces robustness checks,

section 8 concludes. Most tables and �gures are presented in appendix.

2 Literature review

This paper is related to two strands of the empirical literature, (i) on contagion within �nancial

networks and (ii) on cross-border �nancial interconnectedness in Europe.

3. This issue is studied in di�erent papers, e.g., Cont and Wagalath [2013], Allen et al. [2012], Gai and Kapadia

[2010]

4. A core-periphery interbank network is characterized by a densely connected small core of banks and a sparsely

connected periphery. Banks in the periphery are connected to the core only. National interbank networks typically

have a core-periphery structure, see Craig and von Peter [2010].
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2.1 The empirical literature on contagion in �nancial networks

A growing literature investigates the contagion dynamics in national interbank networks. In

reaction to a shock - either idiosyncratic or systematic - one or several propagation channels are

modeled. A number of articles focus on solvency risk only, i.e. on direct losses imputed on a bank's

capital ratio. In these papers, spillovers propagate within the network via direct "domino e�ects",

whereby the default of one �nancial institution on its obligations leads to losses on the balance

sheets of other institutions, which may lead to further defaults, and so on. Important contributions

in this respect include Fur�ne [2003] for the United States or Upper and Worms [2004] for Germany.

Upper [2011] provides a comprehensive survey of the literature on solvency "default cascades".

More recently, a handful of papers model both solvency and liquidity contagion channels.

Cifuentes et al. [2005] include �re sales in a model of capital losses and investigate the ampli�cation

of contagion and the determinants of the �xed point where no more bank fail using simulated data.

Arinaminpathy et al. [2012] study liquidity hoarding in simulated interbank networks subject to

shocks, whereas Karas and Schoors [2012] and Fourel et al. [2013] investigate its empirical features

using respectively data on Russian and on French banks. One essential result is that risk and

contagion can be signi�cantly underestimated if liquidity risk is not accounted for.

Finally, recent models of contagion in �nancial networks suggest that the probability and extent

of distress from unexpected shocks is likely to vary depending not only on the asset market's liquidity

but also on changes in the interbank network structure (see Gai and Kapadia [2010], or Georg

[2013]). 5 This literature points to the need for empirical studies of contagion to account for the

evolving nature of the web of interbank exposures. Our paper further investigates this direction by

repeating the stress scenarios at multiple dates, and by running all simulations over an over-arching

distribution of probable network structures at each date.

2.2 The literature on cross-border interconnectedness in Europe

Another key aspect of our paper with respect to the existing literature is that it focuses not on

one national banking sector but on both domestic and cross-border exposures of European banks.

In that respect, it is related to several papers investigating the structure or the resilience of the

European �nancial sector. Gropp et al. [2009] analyze cross-border contagion using market-implied

distances-to-default to estimate the probability of several �nancial institutions experiencing a large

shock. If it �nds potentially important contagion between European �nancial sectors, this paper does

not provide information regarding the channels of contagion (common exposures, money market,

ownership links, etc.). A few papers, in particular by Castren and Kavonius [2009] and Castren and

Rancan [2013], focus on macro-�nancial linkages between Euro area �nancial sectors, using either

5. The seminal theoretical contribution to the analysis of contagion in a network setup is that of Allen and Gale

[2000]. However, the latter use a highly simpli�ed banking network consisting of four banks only. Allen and Babus

[2009] review the use of network models in �nance.
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balance sheet or �ow of funds data. The main contribution by Castren and Rancan [2013] is to

document the network topology of these �ows over time. One drawback, however, is that they rely

on maximum entropy estimation techniques, whose �t at an international level is likely to be worse

than at a national level (see below) and that they do not rely on direct bank-to-bank exposures.

Finally, Vuillemey and Peltonen [2013] investigate contagion at a European scale through bond and

CDS exposures following a sovereign credit event.

The only attempt to investigate contagion per se in the European interbank market is by

Halaj and Kok [2013]. They use the contagion algorithm �rst proposed by Eisenberg and Noe

[2001] together with a simple model of solvency contagion and of �re sales to propose a metrics

(the "Systemic Probability Index") that captures the likelihood of contagion from the failure of

a given bank to honour its interbank obligations. Their empirical exercise provides evidence for

a "knife-edge" e�ect of contagion, i.e. only a small share of the simulated networks are prone to

substantial contagion, whereas it remains essentially negligible in most instances. While our paper

relies on Halaj and Kok [2013]'s algorithm, it also di�ers from their paper in several important

respects. First, simulation of interbank networks is based on a considerably richer dataset, as we use

bank-to-bank TARGET2 data rather than country-level exposure-at-default data to obtain much

more realistic exposure matrices. Second, our model is less mechanistic as it features behavioural

aspects of liquidity hoarding, implying that each bank's hoarding behaviour is driven by its own

counterparties' characteristics. Third, we investigate in greater details the geographical patterns of

cross-border contagion and repeat our simulations at 5 dates so as to track the European banking

sector's robustness over time. In that respect, our theoretical exercise is considerably richer.

3 The model

Our model builds on the work by Fourel et al. [2013]. In the following we expose its main

theoretical blocks as well as some extensions we implement, while we refer the reader to Fourel

et al. [2013] for more details.

Let us consider a system of N �nancial institutions indexed by i. Each of them is characterized

by a stylized balance sheet presented in Table 1. The asset side of bank i is decomposed into several

items : long- and short-term interbank exposures (ELT (i, j) and EST (i, j) for j ∈ [1;N ]), cash and

liquid assets (cash from now on) Ca(i) and other assets OA(i). We denote the total assets by TA(i).

The liability side of bank i consists of equity C(i) (hereafter capital), long- and short-term interbank

exposures (ELT (j, i) and EST (j, i) for j ∈ [1;N ]) and all other liabilities gathered in OL(i).

Banks are interconnected by two types of links : short-term and long-term exposures. The

distinction between these links is essential within the present model as it enables de�ning two

channels of contagion (liquidity vs. solvency contagion). Short-term exposures are represented

mainly by short-term loans, e.g. with overnight or one-week maturity, and a link can be easily

cut from a certain day/week to the subsequent one. This property of the link allows banks to hoard

liquidity, that is, to reduce or to cut their exposures to a counterparty when needed. As explained
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Assets Liabilities

Long Term ELTt (i, 1) ELTt (1, i) Long Term

Interbank
...

... Interbank

Assets ELTt (i,N) ELTt (N, i) Liabilities

Short Term ESTt (i, 1) ESTt (1, i) Short Term

Interbank
...

... Interbank

Assets ESTt (i,N) ESTt (N, i) Liabilities

Cash Cat(i) OLt(i) Others

Others OAt(i) Cat(i) Capital

Total assets TAt(i) TLt(i) Total liabilities

Table 1 � Bank i's stylized balance sheet at date t

below, liquidity contagion here propagates through the network of short-term exposures. On the

contrary, long-term exposures represent a more stable source of funding and can not be cut before

maturity. Therefore, only if a bank defaults do its counterparties lose all their long-term exposures

to it (taking a recovery rate into account). A network of long-term exposures is the main channel

for the propagation of solvency contagion.

The model consists of three parts : a common market shock, solvency contagion propagation and

liquidity hoarding behavior. This section provides the main intuitions and describes the building

blocks, while additional technical details can be found in appendix.

Common market shock

The way a market shock is simulated is essential. The latter weakens the resilience of the system,

thus revealing more plainly the potential for contagion (see Upper [2011]). In the absence of national

supervisory data allowing to shock various asset classes in bank balance-sheets (as in Elsinger et al.

[2006a], Elsinger et al. [2006b], or in Fourel et al. [2013]), we implement a common shock directly

on all listed banks' capital using a one-factor model for equity returns (see details in Appendix 1).

The same shock is consistently applied over the whole time period, 2008-2012, which allows us to

make sure that contagion in the system is driven purely by the change in the network structure and

banks' capitalization level.

After the system is hit by a market shock, one bank at a time is exogenously pushed to default.

Losses through solvency and liquidity contagion channels are then computed. The fact that only

one banks fails at a time allows us to estimate losses due to the default of each bank and to rank

the banks as more or less systemic.

Solvency contagion

Following Fourel et al. [2013], we de�ne solvency contagion as follows. Let bank i default, then

its counterparts lose all their exposures to this bank. If another bank or some of the banks are highly

exposed to the defaulted bank, they might default as well. A general condition for a bank to default
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due to default contagion is as follows :

[C(j)− ε(j)]︸ ︷︷ ︸
Capital after initial shock

−
∑
i

RS(i)E(j, i)︸ ︷︷ ︸
non-recovered exposures

< 0 (3.1)

where (1 − RS(i)) is a recovery rate. To account for all the losses due to solvency contagion,

the Fur�ne algorithm of iterative default cascade (Fur�ne [2003]) is used. This algorithm allows

incorporating liquidity hoarding behavior of banks in the same framework with solvency contagion.

The detailed implementation of the algorithm is reported in Appendix 2.

Liquidity hoarding

Banks regularly perform liquidity management, estimating their liquidity stock, out�ows and

in�ows for the next period. In normal times, they can foresee with some certainty how much liquidity

they will need to satisfy reserve requirements or other commitments ; to this end they can borrow

from other banks in the interbank market as well as from the central bank (e.g. through weekly main

re�nancing operations). In a well functioning interbank market banks with excess liquidity can lend

it to those who lack short-term funding. This situation can however radically change during times

of increased uncertainty. On one hand, banks' assets become much more volatile creating liquidity

out�ows in terms of margin calls, higher haircuts and requirements for collateral, which are di�cult

to foresee. On the other hand, con�dence in the market evaporates quickly, counterparty risk rises,

and banks fear both their inability to get liquidity when needed as well as counterparty risk. All

this can lead banks to a precautionary demand for liquidity hence to hoarding behavior, by which

they reduce lending to each other in order to secure own liquidity needs and to reduce exposure to

counterparty risk. 6

Banks start hoarding liquidity when there is a signal of market malfunctioning or they start

experiencing problems themselves. For instance, a signal can be a drop in asset prices, high volatility

or unexpectedly large losses. In our simulations we assume that a shock-related capital loss above a

certain threshold represents such a signal. Therefore, banks that were impacted by a market shock

and/or by solvency contagion will start hoarding liquidity, and the higher loss they experience, the

more they hoard. We assume a function for liquidity hoarding depends linearly on the capital loss,

λ(Loss). The function, Figure 1, has 4 intervals : banks do not hoard liquidity in intervals 1 and

4, that is, when capital loss is below some threshold A% (no signal of crisis) or more than 100%

(bank is insolvent). Banks hoard less (a%) in interval 2 when the shock is moderate and more (b%)

in interval 3 when the shock is more adverse.

Banks will decide how much to hoard based on their own perception of market uncertainty. But

they also have to decide how much and from which counterparty they will hoard. A straightforward

assumption is that the riskier the counterparty is, the more a bank hoards liquidity. Provided banks

have no private information about the riskiness of other banks' portfolios, they can rely on leverage

µ as a proxy for the riskiness of a counterparty (Das and Sy [2012], Lautenschlager [2013]). The

6. For the UK sterling market, Acharya and Merrouche [2013] document that riskier UK settlement banks held

more reserves relative to expected payment value in the immediate aftermath of 9 August 2007, thus igniting the rise

in interbank rates and the decline in traded volumes.
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Figure 1 � Liquidity hoarding behaviour.

easiest way for a bank to hoard liquidity is to stop rolling over short-term loans. After all the banks

decide how much to hoard and make claims, the following condition has to be satis�ed for a bank

to be liquid :

[Cash ] + [ToBeRecieved ]− [ToBePaid ] > 0 (3.2)

4 Interbank exposures data and network simulation

This section presents the numerical algorithm used to generate a large number of networks of

long- and short-term interbank exposures, as well as the data used to calibrate and run it. The data

used to construct the matrices of interbank exposures and additional balance sheet items used in

the simulations are also presented.

4.1 The algorithm

We apply the algorithm proposed by Halaj and Kok [2013] to simulate a large number of

interbank networks that are used to run the stress scenarios. In the absence of interbank lending

and borrowing data, one common method in the literature relies on their estimation through entropy

maximization (see Sheldon and Maurer [1998], Wells [2004] and Mistrulli [2011] for a comparison of

this methodology with actual exposure data). We adopt an alternative methodology proposed by

Halaj and Kok [2013] for di�erent reasons. First, one essential drawback of the entropy maximization

method is that the obtained matrix of bilateral exposures is such that strictly positive links are

estimated between any two banks which have a strictly positive aggregate interbank exposure, i.e.
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the obtained network is not sparse and does not display the empirically documented core-periphery

structure (averaging bias). When national banking systems are considered, such an undesirable

feature may be neglected, as domestic banks within a country are typically densely interconnected.

On the contrary, applying the same methodology when cross-border exposures are considered would

amount to neglect either a possible home-bias in interbank exposures or the fact that �nancial

interconnections are evenly spread nor among banks within a national banking sector neither

among di�erent countries' banking sectors. In other words, preferential banking relationships do

exist, as well as strong geographical patterns. Second, the entropy maximization method yields a

unique solution for the bilateral exposures matrix, and may therefore badly account for the fact

that interbank exposures are likely to change quickly. In addition, performing stress scenarios on

a unique exposures matrix typically fails to obtain a probability distribution over the simulation

outcomes. By contrast, the methodology introduced by Halaj and Kok [2013] addresses these two

issues by enabling the construction of a large number of sparse and concentrated networks that all

match the aggregate exposure levels. Third, this methodology enables us to make use of additional

information from TARGET2 data, which could not be used otherwise.

The algorithm to simulate bilateral exposure matrices relies on two inputs : (i) a probability

map and (ii) aggregate interbank exposures data at a bank level (i.e. the sum of the exposures of

any bank i to all other banks in the system). Denote Πt a N ×N probability map at date t whose

each element (i, j) is πij ∈ [0; 1] with πii = 0 and
∑

j πij = 1 for all i. πij is the share of funds lent

by any bank i to any bank j and is later used as the probability structure of interbank linkages.

The construction of a large number of exposure matrices at date t relies on the Πt matrix and on

the total interbank loans granted by any bank i to all its counterparties within the network, denoted

Lti. The construction of one particular exposure matrix, i.e. of all bilateral elements Ltij , relies on

an "Accept-Reject" scheme. A pair (i, j) of banks is randomly drawn, with all pairs having equal

probability. This link in the interbank network is kept with a probability πij and, if so, the absolute

value of this exposure, denoted L̃ij , equals Li multiplied by a random number drawn from a uniform

distribution with support [0; 1]. The amount of exposures left to be allocated is thus reduced. The

procedure is repeated until the di�erence
(
Li −

∑
j L̃ij

)
is below some threshold κ.

4.2 Data and calibration

4.2.1 The sample

We run our contagion analysis using a sample of 73 European banking groups, whose list is

provided in appendix. Given our focus on the resilience of the European banking system, we select

our sample starting from the list of banks that underwent the 2011 stress tests ran by the European

Banking Authority (EBA). 7 This list includes all the banking groups headquartered in Europe

7. See EBA [2011b].
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that are part of the list of Global Systemically Important Banks (G-SIBs) 8, while it excludes some

Spanish "cajas" to avoid an over-representation of the Spanish banking sector. Worth noting is that

our sample also includes savings and cooperative banks, hence non-listed European institutions :

di�erently from the extant empirical literature on contagion that relies on market data, this allows

us to assess also the impact of a shock hitting relatively smaller market players.

4.2.2 Long-term interbank exposures

Information on the total interbank loans Li granted by any bank i to all its counterparties

within the network is retrieved via the balance sheet item named "Net loans to banks" available

in SNL Financials. 9 The main di�erence between this item and "Loans and advances to banks" or

"Deposits from banks" available e.g. in Bankscope, is that the latter also include loans to or from

central banks (see Upper [2011]), which would be a major drawback for our analysis.

4.2.3 The probability map : TARGET2 data

The probability map Πt is obtained based on term interbank money market loans settled in

TARGET2 during each year t. 10 More speci�cally, we use loans with maturities ranging from more

than one month and up to six months to compute shares of preferential lending. The latter are

then imputed in the simulation algorithm as prior probabilities about the existence and size of an

interbank linkage.

For the last quarter of each year, for each lender, we bundle all term loans and compute the

average amount lent to each borrower ; hence based on such average amounts we look at how total

credit was allocated among counterparties. Three details are worth noting in the assumptions we

make to build the probability structure of interbank exposures. First, our computation includes all

the banking groups participating in the interbank euro money market, i.e. not only the 73 banks

belonging to our sample. Subsequently, to form the "`true"' as well as the simulated networks of

exposures, the shares are normalized to consider only the 73 sample banks. 11 Second, we use only

the term market segments in the calculations because it is for unsecured lending at such longer

maturities that preferential interbank lending relationships are more likely to exist and relatively

8. The latest list has been published by the Financial Stability Board in November 2012 and is available at

http://www.financialstabilityboard.org/publications/r_111104bb.pdf.

9. "Net loans to banks" are de�ned as Net loans and advances made to banks after deducting any allowance for

impairment.

10. See Arciero et al. [2013] for details on the identi�cation methodology. Note that in 2012 TARGET2 settled 92%

of the total large value payments tra�c in euro. The remaining fraction of the total turnover is settled mostly via

the EURO1 settlement system. See ecb.2013.

11. This enables us to avoid any bias in the results related to the assignment of too large shares of interbank credit

to banks that are in our sample but may represent only a small fraction of the amounts lent by a certain bank to

European counterparties.

11
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stronger geographical patterns emerge. This is especially so in periods of heightened uncertainty

about counterparties' solvency. 12

4.2.4 Short-term interbank exposures

[TO BE COMPETED]

4.2.5 Cross-border interbank exposures

[TO BE COMPETED]

4.2.6 Additional balance sheet data

[TO BE COMPETED]

4.2.7 Simulation dates

We repeat our counterfactual simulations at year-end for �ve dates,

t = 2008, 2009, 2010, 2011, 2012. 13 Repeating the same stress scenario at multiple points in time

allows tracking the evolution both of the �nancial system resilience to extreme �nancial distress

and of the relative in�uence of the di�erent contagion channels over time.

5 Simulation results

[TO BE COMPLETED]

12. See Cocco et al. [2009] and Brauning and Fecht [2012] for evidence of interbank lending relationships in the

Portuguese and German money market, respectively. The second paper �nds that during the 2007-08 crisis German

borrowers paid on average lower interest rates to their relationship-lenders than to spot-lenders. ECB money market

study reports increasing market fragmentation in the euro money market in relation to the euro area sovereign debt

crisis.

13. Given that the TARGET2 database for unsecured interbank loans starts as of June 2008, it is not possible to

run the simulation for earlier years.

12



6 Econometric analysis

[TO BE COMPLETED]

7 Robustness checks

[TO BE COMPETED]

8 Conclusion

13
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9 Appendix

9.1 Appendix 1 : The model

9.1.1 Common market shock

We model a shock with both a common component and an idiosyncratic component. First, a

market shock hits all listed banks' capital. As mentioned by Upper [2011], contagion is more likely

with such a shock. Second, a bank is exogenously assumed to fail.

The market shock is modeled using a one-factor model for equity returns. The principal factor

and loading coe�cients for all listed banks 14 in our sample (42 institutions) are computed using

daily equity returns over a period spanning from January 1999 to December 2008. The �rst factor

is �tted to a Student t distribution, from which 100,000 simulations are drawn. The 500 left-tail

realizations of the �rst principal component are kept, corresponding to approximatively 0.05% tail

shocks. The impact on each bank's capital is recovered through the factor loadings.

We keep the same market shock for each year in order to make sure about the change in fragility

of the system to contagion during these �ve years.

Simultaneously, one bank is forced to default. One advantage of such a shock is that it enables

analyzing the systemic importance of each institution, even though it abstracts from actual bank

probabilities of default. Losses through solvency and liquidity channels are then computed.

9.1.2 Solvency contagion

We closely follow the model by Fourel et al. [2013]. At time t = 1, banks are hit by a shock ε

according to the methodology previously described. If the initial losses are higher than the capital

of a bank, the latter goes into bankruptcy. We can therefore de�ne the set of all banks defaulting

due to a market shock, named "fundamental defaults", as

FD(C) =

i ∈ N : C0(i) + ε(i)︸︷︷︸
initial shock

≤ 0


= {i ∈ N : C1(i) = 0} ,

(9.3)

where C1(i) = (C0(i) + ε(i))+ is the capital of bank i just after the initial shock.

From this situation, we can de�ne a solvency default cascade (in Amini et al.'s terminology) as

a sequence of capital levels (Ck2 (i), i ∈ N)k≥0 (where k represents the algorithmic step) occurring

at time t = 2 and corresponding to the defaults due to insolvency :{
C0

2 (i) = C1(i)

Ck2 (i) = max(C0
2 (i)−

∑
{j, Ck−1

2 (j)=0}(1−R
S)× E0(i, j); 0), for k ≥ 1,

(9.4)

14. Non-listed banks are assumed to face no market shock, as their equity value is assumed not to be correlated

with market prices.
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where RS is an exogenous recovery rate for solvency contagion.

The sequence is converging (in at most n steps) since (Ck2 )k is a component-wise decreasing

sequence of positive real numbers. Note that subscripts are used for periods of time and superscripts

for rounds of cascades. By "period", we mean the sequential spread of losses through di�erent

channels. This should not be interpreted stricto sensu : we rather consider a sequence of events that

can concomitantly occur in a short period of time, e.g. within one week.

Comparison of the banks initially in default (that is FD(C)) and the banks in default at the end

of t = 2 corresponds to the set of institutions that defaulted only due to solvency default contagion.

We label this set S2.

9.1.3 Liquidity hoarding

In the liquidly hoarding section of our contagion simulations we employ a di�erent functional

form than in Fourel et al. [2013]. We closely follow their model in the remaining sections.

Decision on how much to hoard

To know how much liquidity a bank hoards in total, and how much it hoards from each

counterparty, we make some assumptions. First of all, the total amount of liquidity withdrawn

depends on the size of the shock to the bank's capital : the bigger the losses due to the market

shock, the more the bank hoards liquidity. The proportion of liquidity to be hoarded by bank

i is λ(i) ∈ [0; 1]. It is assumed to depend on the capital loss Loss(i) : at time t, we denote

λt(i) = aLoss(i)1[A;B] + b Loss(i)1[B;100], where 1 is an indicator function 15. We assume that

bank i curtails its positions in the short-term interbank money market by stopping rolling over

debt for a total amount λt(i)E
ST
t (i) where ESTt (i) =

∑
j∈St−1

ESTt−1(i, j) and St−1 is the set of

non-defaulted banks at the end of period t− 1.

How much to hoard from each counterparty

Second, the amount of liquidity the bank hoards from each counterparty depends on the

generalized market perception of its credit risk, for which the leverage ratio can be used as a proxy.

The higher the leverage, the riskier a bank is perceived, the more its counterparties will hoard from

it. De�ning µt(j) as µt(j) = 1 − Ct(j)/TAt(j), we can decompose the total amount of liquidity

hoarded by bank i from its counterparties as follows :

λt(i)E
ST,k−1
t (i) = λt(i)E

ST,k−1
t (i)

∑
j,Ck−1

t (j)≥0

µt(j)E
ST,k−1
t (i, j)

Σhµt(k)EST,k−1
t (i, h)︸ ︷︷ ︸

=1

. (9.5)

Liquidity condition

When a bank hoards liquidity, it improves its short-term funding position, whereas liquidity

15. We test a range of parameters value in order to check the robustness of our results.
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withdrawals by its counterparties deteriorate it. The following liquidity condition must hold :

Cat(i)︸ ︷︷ ︸
cash

+ λt(i)E
ST,k−1
t (i)︸ ︷︷ ︸

hoarding in�ows

−
∑

j,Ck−1
t (j)≥0

λt(j)E
ST,k−1
t (j)

µt(i)E
ST,k−1
t (j, i)

Σlµt(l)E
ST,k−1
t (j, l)︸ ︷︷ ︸

hoarding out�ows

> 0. (9.6)

That is, bank i needs to have enough liquid assets, either interbank or non-interbank, to pay its

short-term debt.

In line with the solvency contagion algorithm, we state that a bank is in default when its capital

has been fully wiped out (solvency condition) or when it can not satisfy its short-term commitments

(liquidity condition).

Update of the algorithm to account for the losses due to solvency and liquidity contagion



C0
t (i) = Ct−1(i)

for k ≥ 1,

Solvency condition :

C ′kt (i) = C0
t (i)−

∑
{j, Ck−1

t (j)=0}(1−R
L)ESTt (i, j)

Liquidity condition :

C ′′kt (i) =


0 if Cat(i) + λt(i)E

ST,k−1
t (i)−∑

h,Ck−1
t (h)≥0 λt(h)EST,k−1

t (h)
µt(i)E

ST,k−1
t (h,i)

Σlµt(l)E
ST,k−1
t (h,l)

< 0

C ′jt (i) otherwise

Updating equation :

Ckt (i) = max(C ′kt (i);C ′′kt (i); 0)

(9.7)

At the end of period t, the algorithm provides the status of each bank (alive or in default), its

capital level and short-term exposures. Some banks may have defaulted during period t, thus some

non-defaulted banks have recorded losses on their capital level. If the capital is then lower than

their economic one, another round of liquidity hoarding treated in period t+ 1 will take place.

9.1.4 Model calibration

9.2 Appendix 2 : The sample

9.3 Appendix 3 : Descriptive statistics

9.4 Appendix 4 : Simulation results

9.5 Appendix 5 : Robustness checks
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