Algorithmic Persuasion
with No Externalities

Shaddin Dughmi and Haifeng Xu

Discussant: Adrian Vetta

Trottier Fellow in Science and Public Policy

School of Computer Science

and

Department of Mathematics and Statistics
McGill University

Nowvember 16th, The Economics of Strategic Communication and Persuasion: Application to Evidence-Based Public Policy, CIRANO.



The Central

Paradigm of

Computer Science

O The central paradigm in computer science is that an algorithm A is good if:

= A runs in polynomial time in the input size n.

O That is, A runs in time T(n) = O(nk) for some constant number k.

eg.  T(n) =100n + 55 T(n) = in*+9991logn
T(n) = 6n" —n> + 899890n? — \/n

O  An algorithm is bad if it runs in exponential time.

eg. T(n)=2"4+100n>  T(n)= 1.00000001" — n° —n






Al 3 =, .
examPi®
."-010,"‘L

0O An agent wants to discover its preference ordering over n outcomes.

= This is simply the problem of sorting n numbers.

A Good Algorithm: MergeSort runs in time O(n - log n)

A Bad Algorithm: ExhaustiveSearch runs in time  O(n - n!) > 2"

0O The functionality of our economic system is based on this paradigm!

= Public-Key Cryptography: Message senders and recipients have
good algorithms to encrypt and decrypt.

=  An cavesdropper has a bad algorithm to decript [prime factorization].



An Equivalent
Characterization

O  This central paradigm has an equivalent formulation:

= A runs in polynomial time in the input size n.

= The input sizes that A can solve, in a fixed amount T of time,
scales multiplicatively with increasing computational power.



Multiplicative Scalability

O  An algorithm A is good if the input sizes it can solve, in a fixed amount T

of time, scales multiplicatively with increasing computational power.

Input Sizes solved in Time T

Power =1 Power = 2
n g8 Dl

S o T VZ-VT

2L log T’ 1+ log T




Moore’s Law

Microprocessor Transistor Counts 1971-2011 & Moore's Law

16-Core SPARC T2

Siw-Core Core i
2,600,000,000 = Sin-Core ¥eon 7400 H ®10-Core Xeon Westmere-EX
Dual-Core ftanium B l__..S-ciée POWlEgFé?
- AMD K10 3 iad- Care Ttanium Tukwila
1,000,000,000 P OWE RG® ‘g '\ ""§-Cole ¥eon Mehalem-EX

taniurn 2 with 9WE cache Siw-Core Opteran 2400
AND K108 “Core i7 (Quad)

Itaniurm 28 tsghe 2oes

100,000,000 SAND KB
Pertiurm 4 moatn ®Aom
curve shows transistor oZlIB .
= _ count doubling every AND KB
% 10,000,000 two years & Fengium 11
=] ®AND K5
= & Pentium
—
2
1] 1,000,000 < s0486@
5
- g0385®
=
80286 @
100,000
68000® Ziam

a0gie eB0B

o

085
10,000 800y @600
8080

|~ eza0
8002@ ?CI.IOSSSUZ
2,300 - 4004e Reg sz

f T T T 1
1971 1380 1330 2000 2011

Date of introduction

Moore’s Law: Computational power doubles roughly every two years.

——> Exponential time algorithms will never be able to solve large problems.



Software
Versus
Hardware

0O Thus, improvements in hardware will never overcome bad algorithm design.

0O Indeed, the current dramatic breakthroughs in computer science are based
upon better (faster and higher performance) algorithmic techniques.



Computational
Complexity

Therefore, a basic aim of computer science is to understand which
problems have good algorithms and which problems don’t.

As a first step, we do this by assigning problems to complexity classes
in the computational hierarchy.

e.g. P The set of decision problems that can always be solved

in polynomial time by a (deterministic) computer.

The set of decision problems that can bkwybrbd solved
enx rathenoiali 4l mhiedeyByxdh mostide tSenrihistic computer.

00 The hardest problems in these groups form an equivalence class
called complete problems.



she 2 N1

Conjecture

= This conjecture states that computation is harder than verification.

Informally 1: If P = NP then the existence of a bad algorithm
(i.e. exhaustive search) implies the existence of a good algorithm.

Informally 2: If P = NP then having a wizard who can magically
find you an optimal solution does not help you in your search!




0O Traditionally, computer scientists have studied computation in the
context of an optimizer designing fast code in problem solving.

0O  However, recently there has been an strong interest in dealing with
situations where there multiple decision-makers.




0O Why should Economists or Game
Theorists or Bayesian Persuaders care
about computation!

= Because it applies beyond computers to every decision-maker and
decision-making process and to all mechanisms and markets.

0O For example, we have no good algorithms for

= Nash equilibria in Bimatrix Games. =  Market Equilibria.

= Combinatorial Auctions. »  Fair Division, etc.



Comments and Questions

0 The main result shows, for any monotone set function f, a computational

equivalence between optimizing the private signal and the maximizating f
plus an additive function.

= The proof is cleverly pieced together in via the techniques of
reduction, LP duality and separation oracles.

O  Bayesian Persuasion relates very closely to Correlated Equilibria.
= Can you explain why Bayesian persuasion is a more general problem?

=  The techniques used in the paper also relate closely to approaches taken to
find welfare maximizing correlated equilibria.

> How do your methods differ?

»  Can your methods be used to obtain stronger results for correlated
equilibria or other problems?



