Meetings and Mechanisms

Xiaoming Cai¹ Pieter Gautier² Ronald Wolthoff³

¹Tongji University

²VU Amsterdam & Tinbergen Institute

³University of Toronto

May 2017

• How does trade take place in decentralized markets?

- How do I sell my house?
- (or: how do we hire a new assistant professor?)

Big Question

• How does trade take place in decentralized markets?

- How do I sell my house?
- (or: how do we hire a new assistant professor?)
- Mechanism design literature provides answer for monopolistic seller.
 - Organize an auction to extract as much surplus as possible.

Big Question

• How does trade take place in decentralized markets?

- How do I sell my house?
- (or: how do we hire a new assistant professor?)
- Mechanism design literature provides answer for monopolistic seller.
 - Organize an auction to extract as much surplus as possible.
- However, competition is a crucial feature of many markets and changes incentives.
 - If I try to extract too much surplus, buyers will go to a competitor.

Search Literature

- Search literature provides a theoretical framework, which has been used to study various aspects of the matching process, e.g.
 - Price determination.
 - Role of information frictions.
 - Dynamic considerations.
- However, competition in a decentralized environment leads to new questions, which remain relatively unexplored:
 - How do buyers and sellers meet in the first place?
 - How does this process affect outcomes?

Meeting Technologies

• Markets differ in whether a seller can meet buyers simultaneously.

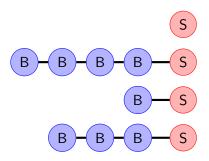
capacity $ightarrow \infty$ (auction site)

 $1 < \mathsf{capacity} < \infty$ (labor market)

- Housing market: many-to-one, but viewings are costly.
- Durable consumer goods market: bilateral (e.g. car dealers).
- Online goods/services: many-to-one (eBay) or bilateral (Airbnb).
- Labor market: many-to-one, but firms screen subset of applications.
 - EOPP data: 5 out of 14 applicants.
 - Burks et al. (2014): 10% of 1.4 million applicants.
 - Agrawal et al. (2014): new platforms like Upwork facilitate many-on-one meetings in markets where meetings used to be bilateral, creating scope for different wage mechanisms like auctions.

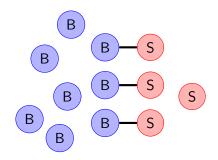
Standard Approach

- Except for a few exceptions, every paper in the literature simply makes—without too much motivation—one of two assumptions:
 - urn-ball meetings (Poisson-to-one).
 - 2 bilateral meetings (one-to-one).



Standard Approach

- Except for a few exceptions, every paper in the literature simply makes—without too much motivation—one of two assumptions:
 - urn-ball meetings (Poisson-to-one).
 - elisteral meetings (one-to-one).



- Adverse selection and liquidity.
 - Bilateral: Guerrieri, Shimer and Wright (2010), Chang (2014).
 - Urn-ball: Auster and Gottardi (2016).
- Sorting between heterogeneous agents.
 - Bilateral: Shimer and Smith (2000), Eeckhout and Kircher (2010a).
 - Urn-ball: Shi (2002), Shimer (2005), Albrecht et al. (2014).
- Macro dynamics
 - Bilateral: Menzio and Shi (2011), Lise and Robin (2016).

This Paper: Beyond Urn-Ball and Bilateral

- Standard environment with three ingredients:
 - buyers are (ex ante) heterogeneous in their private valuations;
 - homogeneous sellers compete for these buyers;
 - process by which buyers meet sellers is frictional.
 - directed search: unit supply/demand + symmetric strategies.
- However:
 - arbitrary meeting technologies, as in Eeckhout and Kircher (2010b).

Contribution

- New representation of meeting technologies that simplifies the analysis and allows us to make progress.
- Optimal mechanism for arbitrary meeting technologies.
- Conditions on meeting technology that guarantee unique queue for a given mechanism.
- Efficiency of the equilibrium.
- Two-sided heterogeneity: sorting.
- Spin-off: CGW (2017, JET)
 - Necessary and sufficient conditions for perfect separation / pooling.

- Eeckhout and Kircher (2010b).
 - introduce framework to think about arbitrary meeting technology.
 - sufficient conditions for pooling and separating.
- Lester, Visschers and Wolthoff (2015).
 - ex post heterogeneity.
- Cai (2016).
 - random search + bargaining.

Environment

- Static model.
- Measure 1 of risk-neutral sellers, indexed by $j \in [0, 1]$.
- Measure Λ of risk-neutral buyers.
- Unit supply / demand of an indivisible good.
- Sellers' valuation: y = 0.
 - Extension: $y \sim H(x)$ with $0 \leq y \leq 1$.
- Buyers' valuation: $x \sim G(x)$ with $0 \leq x \leq 1$.
 - Privately observed before making decisions.

Search

• Each seller posts and commits to a direct mechanism.

- A mechanism specifies for each buyer *i* ...
 - a probability of trade $\chi(x_i, x_{-i}, n)$
 - an expected transfer $t(x_i, x_{-i}, n)$
 - as a function of ...
 - number *n* of buyers meeting the seller
 - the valuation x_i reported by buyer i
 - the valuations x_{-i} reported by the n-1 other buyers.
- Buyers observe all mechanisms and choose one.
- Restriction: symmetric and anonymous strategies.
- All agents choosing a particular mechanism form a submarket.

- Consider a submarket with *b* buyers and *s* sellers.
- Ratio of buyers to sellers is the queue length $\lambda = \frac{b}{s}$.
- Meetings governed by a CRS meeting technology, summarized by

 $P_n(\lambda) = \mathbb{P}[\text{seller meets } n \text{ buyers}|\lambda] \text{ for } n \in \{0, 1, 2, \ldots\}.$

Assumptions

- Assumptions on $P_n(\lambda)$.
 - Exogenous.
 - Twice continuously differentiable.
 - Consistency: $\sum_{n=0}^{\infty} nP_n(\lambda) \leq \lambda$.
 - Type independence:
 - Suppose $\mu \in [0, \lambda]$ buyers in the submarket are blue.
 - Then, $\mathbb{P}[\text{seller meets } i \text{ blue buyers and } n-i \text{ other buyers}] =$

$$P_n(\lambda) \binom{n}{i} \left(\frac{\mu}{\lambda}\right)^i \left(1-\frac{\mu}{\lambda}\right)^{n-i}$$

Better Representation

- Submarket with μ blue buyers and $\lambda \mu$ other buyers.
- Define $\phi(\mu, \lambda) = \mathbb{P}[\text{seller meets } at \text{ least one blue buyer}].$
- Given type independence,

$$\phi(\mu,\lambda) = 1 - \sum_{n=0}^{\infty} P_n(\lambda) \left(1 - \frac{\mu}{\lambda}\right)^n$$

• Use of ϕ simplifies the derivation and presentation of our results.

Lemma

There exists a one-to-one relationship between $\phi(\mu, \lambda)$ and $\{P_n(\lambda)\}$.

▶ Proof

- Increase in μ makes it easier for seller to meet a high-type buyer.
 - $\phi_{\mu} > 0$ and $\phi_{\mu\mu} \leq 0$.
- However, increase in λ makes meeting a high-type buyer ...
 - $\phi_{\lambda} < 0$: harder;
 - $\phi_{\lambda} = 0$: neutral;
 - $\phi_{\lambda} > 0$: easier.

Examples of Meeting Technologies

Example (Urn-Ball)

- Number of buyers at each seller is $Poi(\lambda)$, i.e. $P_n(\lambda) = e^{-\lambda \frac{\lambda^n}{n!}}$.
- Micro-foundation: each buyer is randomly allocated to a seller.

•
$$\phi(\mu, \lambda) = 1 - e^{-\mu}$$
. Note: $\phi_{\lambda} = 0$.

Example (Bilateral)

- Number of buyers at each seller is 0 or 1, i.e. P₀ (λ) + P₁ (λ) = 1, where P₁(λ) is strictly increasing and concave.
- Micro-foundation: random pairing of agents.

•
$$\phi(\mu, \lambda) = P_1(\lambda) \frac{\mu}{\lambda}$$
. Note: $\phi_{\lambda} < 0$.

Examples of Meeting Technologies

Example (Truncated Urn-Ball)

- Urn-ball, but seller can meet $1 < N < \infty$ buyers.
- Note: $\phi_{\lambda} < 0$.

Example (Geometric; Lester, Visschers and Wolthoff, 2015)

•
$$P_n\left(\lambda
ight)=rac{\lambda^n}{\left(1+\lambda
ight)^{n+1}}$$
 and .

• Micro-foundation: agents are randomly positioned on a circle and buyers walk clockwise to the nearest seller.

•
$$\phi(\mu, \lambda) = \frac{\mu}{1+\mu}$$
. Note: $\phi_{\lambda} = 0$.

Planner's Problem

- Planner aims to maximize surplus, subject to the meeting frictions.
- Planner can observe buyers' types (WLOG, as we will show).
- Two decisions
 - Allocation of buyers: queues for each seller.
 - 2 Allocation of the good: trading rule after arrival of buyers.
- Solve in reverse order.

• Trivial solution: allocate good to the buyer with the highest valuation.

• Trivial solution: allocate good to the buyer with the highest valuation.

Lemma

Surplus at a seller with a queue λ of buyers with type cdf F (x) equals

$$S(\lambda,F) = \int_0^1 \phi(\lambda(1-F(x)),\lambda) dx.$$

For each seller j ∈ [0, 1], planner chooses a queue length λ (j) and a distribution of buyer types F (j, x) to maximize total surplus

$$S = \int_0^1 S(\lambda(j), F(j, x)) \, dj.$$

- Planner cannot allocate more buyers of a certain type than available.
- Terminology:
 - A submarket is *active* if it contains buyers and sellers.
 - A submarket is *idle* if it contains either only buyers or only sellers.

Lemma

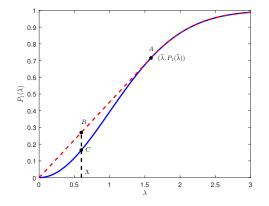
If $\phi_{\lambda}(\mu, \lambda) \ge 0$ (≤ 0 resp.) for all $0 < \mu < \lambda$, then the planner will require all buyers (sellers resp.) to be active in the market.

Number of Submarkets

Proposition

If there are $n \in \mathbb{N}$ buyer types, the planner's problem can be solved with

(at most) n + 1 submarkets, including one potentially idle submarket.

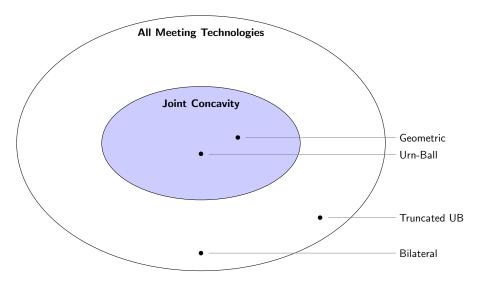


- Conditions on the meeting technology that are necessary and sufficient to obtain ...
 - perfect separation (i.e. *n* submarkets)
 - perfect pooling (i.e. 1 submarket)

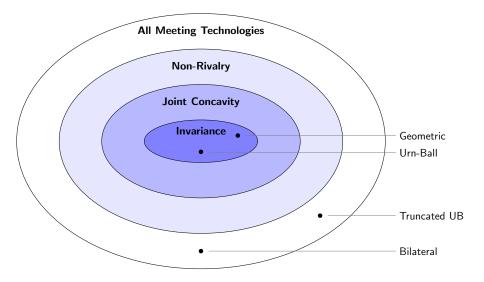
for any Λ and G.

- These conditions are
 - separation \iff meetings are bilateral.
 - pooling \iff meetings satisfy joint concavity of ϕ in (μ, λ) .

Classification of Meeting Technologies



Classification of Meeting Technologies



Market Equilibrium

- In a submarket with mechanism m and a queue of buyers (λ, F) :
 - $R(m, \lambda, F) =$ expected payoff of a seller
 - $U(x, m, \lambda, F) =$ expected payoff of a buyer with valuation x.
 - $\overline{U}(x) =$ the market utility function, i.e.

$$\overline{U}(x) = \max_{j \in [0,1]} U(x; m(j), \lambda(j), F(j, \cdot)).$$

Equilibrium Definition

Definition

A directed search equilibrium is a mechanism m(j) and a queue

 $(\lambda(j), F(j, \cdot))$ for each seller $j \in [0, 1]$, and a market utility $\overline{U}(x)$ for each type of buyer x, such that ...

• each $(m(j), \lambda(j), F(j, \cdot))$ maximizes $R(m, \lambda, F)$ subject to

 $U(x, m, \lambda, F) \leq \overline{U}(x)$, with equality for x in the support of F.

- aggregating queues across sellers does not exceed the total measure of buyers of each type;
- incentive compatibility is satisfied, so buyers report their valuations truthfully.

• Market utility: seller posting *m* expects a queue (λ, F) satisfying

 $U(x, m, \lambda, F) \leq \overline{U}(x)$, with equality for x in the support of F.

• Complication: not obvious that this condition has a unique solution.

- Standard solution: assume that sellers are optimistic and expect the solution that maximizes their revenue (see e.g. McAfee, 1993; Eeckhout and Kircher, 2010b; Auster and Gottardi, 2016; CGW, 2017).
- This makes deviations maximally profitable and may therefore help to limit the set of equilibria.
- Our contribution: derive (weak) conditions which jointly imply a unique solution.

Proposition

For any meeting technology, the planner's solution $\{\lambda(j), F(j, x)\}$ can be decentralized as a directed search equilibrium in which seller j posts a second-price auction and a meeting fee equal to

$$\tau(j) = -\frac{\int_0^1 \phi_\lambda(\lambda(j)(1 - F(j, x)), \lambda(j)) dx}{\phi_\mu(0, \lambda(j))}$$

Intuition

- Market utility implies that sellers are residual claimants on surplus.
- Hence, incentive to implement planner's solution; this requires ...
 - Efficient allocation of buyers to sellers.
 - 2 Efficient allocation of the good.
- Auction fulfills second condition.
- First condition requires that each buyer receives a payoff equal to marginal contribution to surplus.
- Meeting fee ensures this by pricing the meeting externality.
 - Denominator: probability of meeting a seller.
 - Numerator: externality on meetings between seller and other buyers.

- Ranking of surplus (decreasing order):
 - Planner who knows buyers' valuations.
 - Planner who does not know buyers' valuations.
 - Market equilibrium.
- Equivalence of **1** and **3** therefore implies equivalence of all three.

Uniqueness

- Second-price auction can be replaced by first-price auction, etc.
 - Allocation or payoffs remain the same.
- For some meeting technologies, multiple allocations generate the same surplus.
 - Allocation may vary, but surplus and payoffs remain the same.
- For some meeting technologies, multiple queues can be compatible with market utility.
 - Allocation, surplus and payoffs may vary.

- When are queues uniquely determined by market utility?
- Consider the case in which the support of G(x) is [0, 1].
 - (weaker condition in the paper).
- Define ...
 - $Q_0(\lambda) = \mathbb{P}[$ buyer fails to meet a seller].
 - $Q_1(\lambda) = \mathbb{P}[$ buyer meets a seller without other buyers].
- Both probabilities can readily be calculated from $P_n(\lambda)$ or $\phi(\mu, \lambda)$.

Assumptions

Assumption

- A1. $Q_1(\lambda)$ is strictly decreasing in λ .
- A2. $1 Q_0(\lambda)$ is (weakly) decreasing in λ .
- A3. $\frac{Q_1(\lambda)}{1-Q_0(\lambda)}$ is (weakly) decreasing in λ .
 - Not restrictive: satisfied for each of our examples.

Proposition

Under A1, A2 and A3, for a seller posting an auction with entry fee t, there is a unique queue (λ, F) compatible with market utility.

- Main idea
 - Market utility U(x) is strictly convex.
 - Slopes in \underline{x} and \overline{x} are $Q_1(\lambda)$ and $1 Q_0(\lambda)$, respectively.
 - Hence, one-to-one relation between λ , \underline{x} and \overline{x} .
 - A3 is required to establish one-to-one relation with *t*.

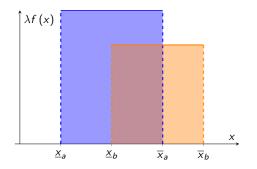
Characterization of the Queue

Proposition

Under A1, A2 and A3, for a seller posting an auction with entry fee t, ...

• the support of F is an interval $[\underline{x}, \overline{x}]$.

• if $t_a < t_b$, then $\lambda^a > \lambda^b$, $\underline{x}_a \leq \underline{x}_b$, and $\overline{x}_a \leq \overline{x}_b$.



Assumption A4. $\phi_{\mu\lambda}(\mu, \lambda) \leq 0$ for $0 \leq \mu \leq \lambda$.

 Interpretation: low-type buyers exert a (weakly) negative externality on high-type buyers.

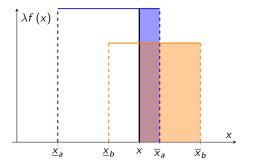
• A4 \implies A2.

... Strengthens the Characterization

Proposition

Under A1, A3 and A4, if $\lambda^a > \lambda^b$ and $\underline{x}_b < \overline{x}_a$, then for any $x \in [\underline{x}_b, \overline{x}_a]$,

$$\lambda^{b}\left(1-F^{b}\left(x
ight)
ight)\geq\lambda^{a}\left(1-F^{a}\left(x
ight)
ight).$$



Further Strengthening the Assumption ...

Assumption Invariance. $\phi_{\lambda}(\mu, \lambda) = 0$ for $0 \le \mu \le \lambda$.

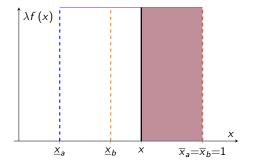
- Interpretation: meetings with high-type buyers are unaffected by the presence of low-type buyers.
- Invariance \implies (A1,A2,A3,A4).

... Further Strengthens the Characterization

Proposition

If meetings are invariant, then for $x \in [\underline{x}_b, 1]$,

$$\lambda^{a}\left(1-F^{a}\left(x\right)\right)=\lambda^{b}\left(1-F^{b}\left(x\right)\right).$$



Two-Sided Heterogeneity and Sorting

Two-Sided Heterogeneity and Sorting

- Suppose sellers differ in their valuation $y \sim H(x)$ with $0 \leq y \leq 1$.
- Earlier results regarding uniqueness and efficiency carry over.
- Characterizing sorting patterns requires additional (weak) assumption.

Assumption

A6. $P_0(\lambda)$ is strictly decreasing in λ .

Proposition (Positive Assortative Matching)

Under A1, A3, A4 and A6, $y_a < y_b$ implies $\lambda^a \ge \lambda^b$, $\underline{x}_a \le \underline{x}_b$, $\overline{x}_a \le \overline{x}_b$,

and the earlier results regarding characterization.

Conclusion

- We analyze an environment in which ...
 - sellers compete for heterogeneous buyers by posting mechanisms;
 - buyers direct their search;
 - meetings are governed by a frictional meeting technology.
- We introduce a transformation (φ) of the meeting technology which allows us to extend and clarify many existing results in competing auctions literature.

Appendix Slides

Special Cases

- Urn-ball (e.g. Peters and Severinov, 1997)
 - all sellers post auctions.
 - buyers randomize between all sellers (in equilbrium).
 - perfect pooling: single market.
 - equilibrium is constrained efficient.
- Bilateral (e.g. Eeckhout and Kircher, 2010b)
 - sellers post different prices.
 - buyers select market that is optimal for their type.
 - perfect separation: # markets = # types.
 - equilibrium is constrained efficient.

Proof of One-to-One Relation between ϕ and P_n

Proof.

• Define probability-generating function (pgf) of $P_n(\lambda)$, i.e.

$$m(z,\lambda) \equiv \sum_{n=0}^{\infty} P_n(\lambda) z^n = 1 - \phi(\lambda(1-z),\lambda).$$

• Then, by the properties of pgfs,

$$P_{n}(\lambda) = \frac{1}{n!} \frac{\partial^{n}}{\partial z^{n}} m(z,\lambda) \bigg|_{z=0} = \frac{(-\lambda)^{n}}{n!} \frac{\partial^{n}}{\partial \mu^{n}} (1 - \phi(\mu,\lambda)) \bigg|_{\mu=0}$$

